若a.b.c為實(shí)數(shù).則下列命題正確的是 A.若a>b.則ac2>bc2 B.若a<b<0.則a2>ab>b2C.若a<b<0.則< D.若a<b<0.則> 查看更多

 

題目列表(包括答案和解析)

若a、b、c為實(shí)數(shù),則下列命題正確的是(    )

A.若a>b,則ac2>bc2

B.若a<b<0,則a2>ab>b2

C.若a<b<0,則

D.若a<b<0,則

查看答案和解析>>

ab、c為實(shí)數(shù),則下列命題正確的是

A.若ab,則ac2bc2

B.若ab<0,則a2abb2

C.若ab<0,則

D.若ab<0,則

查看答案和解析>>

若a、b、c為實(shí)數(shù),則下列命題正確的是(   )

A.若,則 B.若,則 
C.若,則 D.若,則 

查看答案和解析>>

若a、b、c為實(shí)數(shù),則下列命題正確的是(   )
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

下列命題正確的有
(1)、(2)、(4)
(1)、(2)、(4)
(填上序號(hào))
(1)過兩圓C1:x2+y2-4=0,C2:x2+y2-4x+4y-12=0的交點(diǎn)的直線方程是x-y+2=0.
(2)已知實(shí)系數(shù)方程f(x)=x2+ax+2b=0的一個(gè)根在(0,1)內(nèi),另一個(gè)根在(1,2)內(nèi),則(a-1)2+(b-2)2的取值范圍是(8,17).
(3)在等比數(shù)列{an}中,0<a1<a4=1,若集合A={n|a1+a2+…+an-
1
a1
-
1
a2
-…-
1
an
≤0,n∈N*},則集合A中有4個(gè)元素.
(4)已知△ABC的周長(zhǎng)為6,三邊a,b,c成等比數(shù)列,則△ABC的面積的最大值是
3

查看答案和解析>>

一、 C B C B B AC D A B    C D

二、13.           14.              15.         16.3

三、17(Ⅰ)

            = =

得,

.

故函數(shù)的零點(diǎn)為.         ……………………………………6分

(Ⅱ)由

.又

       

         , 

                   ……………………………………12分

18. 由三視圖可知:,底面ABCD為直角梯形,, BC=CD=1,AB=2

(Ⅰ)∵  PB⊥DA,梯形ABCD中,PB=BC=CD=1,AB=2 ∴BD=

又可得DA=,∴DA⊥BD ,∴DA⊥平面PDB,

∴  AD⊥PD                                   ……………………………4分

 

 (Ⅱ)  CM∥平面PDA  理由如下:

取PB中點(diǎn)N,連結(jié)MN,DN,可證MN∥CD且MN=CD,∴CM∥DN,∴CM∥平面PDA

                                                                 …………8分

 (Ⅲ)            

                                                            ……………12分

19. (Ⅰ)九年級(jí)(1)班應(yīng)抽取學(xué)生10名; ………………………2分

(Ⅱ)通過計(jì)算可得九(1)班抽取學(xué)生的平均成績(jī)?yōu)?6.5,九(2)班抽取學(xué)生的平均成績(jī)?yōu)?7.2.由此可以估計(jì)九(1)班學(xué)生的平均成績(jī)?yōu)?6.5, 九(2)班學(xué)生的平均成績(jī)?yōu)?nbsp;     17.2                                                     ………………………6分

(Ⅲ)基本事件總數(shù)為15,滿足條件的事件數(shù)為9 ,故所求事件的概率為

………………………………12分

20. (Ⅰ)證明 設(shè)

相減得  

注意到  

有        

即                           …………………………………………5分

(Ⅱ)①設(shè)

由垂徑定理,

即       

化簡(jiǎn)得  

當(dāng)軸平行時(shí),的坐標(biāo)也滿足方程.

故所求的中點(diǎn)的軌跡的方程為;

    …………………………………………8分

②      假設(shè)過點(diǎn)P作直線與有心圓錐曲線交于兩點(diǎn),且P為的中點(diǎn),則

         

由于 

直線,即,代入曲線的方程得

             

            

故這樣的直線不存在.                      ……………………………………12分

21.(Ⅰ)函數(shù)的定義域?yàn)?sub>

由題意易知,   得    ;

                             當(dāng)時(shí),當(dāng)時(shí),

故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.   …………………………6分

   (Ⅱ)

①     當(dāng)時(shí),遞減,無極值.

②     當(dāng)時(shí),由

當(dāng)時(shí),當(dāng)時(shí),

時(shí),函數(shù)的極大值為

;

函數(shù)無極小值.                                 …………………………13分

22.(Ⅰ)            

                          …………………………………………4分

(Ⅱ) ,

          ……………………………8分

 (Ⅲ)假設(shè)

,可求

故存在,使恒成立.

                                   ……………………………………13分

 

 

 

 

 


同步練習(xí)冊(cè)答案