某工廠規(guī)定:工人只要生產(chǎn)出一件甲級(jí)產(chǎn)品發(fā)獎(jiǎng)金50元,生產(chǎn)出一件乙級(jí)產(chǎn)品發(fā)獎(jiǎng)金30元,若生產(chǎn)出一件次品則扣獎(jiǎng)金20元,某工人生產(chǎn)甲級(jí)品的概率為0.6,乙級(jí)品的概率為0.3,次品的概率為0.1,則此人生產(chǎn)一件產(chǎn)品的平均獎(jiǎng)金為 元. 查看更多

 

題目列表(包括答案和解析)

(理科)某工廠在試驗(yàn)階段生產(chǎn)出了一種零件,該零件有A、B兩項(xiàng)技術(shù)指標(biāo)需要檢測,設(shè)各項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)與否互不影響.若有且僅有一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為
5
12
,至少一項(xiàng)技術(shù)指標(biāo)達(dá)標(biāo)的概率為
11
12
.按質(zhì)量檢驗(yàn)規(guī)定:兩項(xiàng)技術(shù)指標(biāo)都達(dá)標(biāo)的零件為合格品.則一個(gè)零件經(jīng)過檢測,為合格品的概率是
 

查看答案和解析>>

某廠生產(chǎn)某種電子元件,如果生產(chǎn)出一件正品,可獲利200元,如果生產(chǎn)出一件次品,則損失100元,已知該廠在制造電子元件過程中,次品率p與日產(chǎn)量x的函數(shù)關(guān)系是:p=
3x4x+32
(x∈N*)

(1)求該廠的日盈利額T(元)用日產(chǎn)量x(件)表示的函數(shù);
(2)為獲最大盈利,該廠的日產(chǎn)量應(yīng)定為多少?

查看答案和解析>>

(08年莆田四中一模理)(12分)

某廠生產(chǎn)某種電子元件,如果生產(chǎn)出一件正品,可獲利200元,如果生產(chǎn)出一件次品則損失100元.已

知該廠制造電子元件過程中,次品率與日產(chǎn)量的函數(shù)關(guān)系是:

(1)將該廠的日盈利額(元)表示為日產(chǎn)量(件)的函數(shù);

(2)為獲得最大盈利,該廠的日產(chǎn)量應(yīng)為多少件?

查看答案和解析>>

某廠生產(chǎn)某種電子元件,如果生產(chǎn)出一件正品,可獲利200元,如果生產(chǎn)出一件件次品則損失100元,已知該廠制造電子元件過程中,次品率與日產(chǎn)量的函數(shù)關(guān)系是

(1)將該廠的日盈利額(元)表示為日產(chǎn)量(件)的函數(shù);

(2)為獲最大盈利,該廠的日產(chǎn)量應(yīng)定為多少件?

查看答案和解析>>

某廠生產(chǎn)某種電子元件,如果生產(chǎn)出一件正品,可獲利200元,如果生產(chǎn)出一件次品,則損失100元,已知該廠在制造電子元件過程中,次品率p與日產(chǎn)量x的函數(shù)關(guān)系是:
(1)求該廠的日盈利額T(元)用日產(chǎn)量x(件)表示的函數(shù);
(2)為獲最大盈利,該廠的日產(chǎn)量應(yīng)定為多少?

查看答案和解析>>

一、1.D 2. B 3.A  4.D  5. D  6.  A  7.  B  8.  C  9.  D  10.  C   11.  C  12 A 13. 提示:此題為抽樣方法的選取問題.當(dāng)總體中個(gè)體較多時(shí)宜采用系統(tǒng)抽樣;當(dāng)總體中的個(gè)體差異較大時(shí),宜采用分層抽樣;當(dāng)總體中個(gè)體較少時(shí),宜采用隨機(jī)抽樣.

依據(jù)題意,第①項(xiàng)調(diào)查應(yīng)采用分層抽樣法、第②項(xiàng)調(diào)查應(yīng)采用簡單隨機(jī)抽樣法.故選B.

答案:B

1,3,5

答案:B

二. 15. 37  ; 16.  ; 17.甲 ; 18.5600;

19. 提示:此問題總體中個(gè)體的個(gè)數(shù)較多,因此采用系統(tǒng)抽樣.按題目中要求的規(guī)則抽取即可.

m=6,k=7,m+k=13,∴在第7小組中抽取的號(hào)碼是63.

答案:63

20.提示:不妨設(shè)在第1組中隨機(jī)抽到的號(hào)碼為x,則在第16組中應(yīng)抽出的號(hào)碼為120+x.

設(shè)第1組抽出的號(hào)碼為x,則第16組應(yīng)抽出的號(hào)碼是8×15+x=126,∴x=6.

答案:6

三.21.解 分層抽樣應(yīng)按各層所占的比例從總體中抽取.

∵120∶16∶24=15∶2∶3,又共抽出20人,

∴各層抽取人數(shù)分別為20×=15人,20×=2人,20×=3人.

答案:15人、2人、3人.

22. 解:(1)  ;  ;;.

的概率分布如下表

0

1

2

3

P

(2)乙至多擊中目標(biāo)2次的概率為.

  • 1,3,5

    所以甲恰好比乙多擊中目標(biāo)2次的概率為

     


    同步練習(xí)冊(cè)答案