解法二學科網(wǎng) 查看更多

 

題目列表(包括答案和解析)

(2007•普陀區(qū)一模)現(xiàn)有問題:“對任意x>0,不等式x-a+
1
x+a
>0恒成立,求實數(shù)a的取值范圍.”有兩位同學用數(shù)形結合的方法分別提出了自己的解題思路和答案:
學生甲:在一個坐標系內(nèi)作出函數(shù)f(x)=
1
x+a
和g(x)=-x+a的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側的部分恒在g(x)的上方.可解得a的取值范圍是[0,+∞]
學生乙:在坐標平面內(nèi)作出函數(shù)f(x)=x+a+
1
x+a
的大致圖象,隨著a的變化,要求f(x)的圖象再y軸右側的部分恒在直線y=2a的上方.可解得a的取值范圍是[0,1].
則以下對上述兩位同學的解題方法和結論的判斷都正確的是( 。

查看答案和解析>>

已知函數(shù)f(x)=|x-1|+|x-2|+…+|x-n|(n∈N*),f(x)的最小值記為an.數(shù)形結合可得a1=0,a2=1,…則a3=
 
,當n是奇數(shù)時,an=
 

查看答案和解析>>

將棱長為3的正四面體的各棱長三等分,經(jīng)過分點將原正四面體各頂點附近均截去   一個棱長為1的小正四面體,則剩下的多面體的棱數(shù)E為    (    )學科網(wǎng)

    A.16                B.17                C.18                  D.19學科網(wǎng)

查看答案和解析>>

(本小題滿分13分)

已知中心在坐標原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點。

(1)求橢圓C的方程;

(2)是否存在平行于OA的直線,使得直線與橢圓C有公共點,且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請說明理由。

【命題意圖】本小題主要考查直線、橢圓等基礎知識,考查運算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結合思想、化歸與轉化思想。

查看答案和解析>>

將全體正整數(shù)排成一個三角形數(shù)陣:學科網(wǎng),

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

………………

 
                    學科網(wǎng)

學科網(wǎng)

學科網(wǎng)

學科網(wǎng)

學科網(wǎng)

則第n行(n≥3)從左向右的第3個數(shù)為____________.學科網(wǎng)

學科網(wǎng)

查看答案和解析>>


同步練習冊答案