(1)作.垂足為.連結(jié).由題設(shè)知.底面. 查看更多

 

題目列表(包括答案和解析)

如圖,三棱柱中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(diǎn)。

(I) 證明:平面⊥平面

(Ⅱ)平面分此棱柱為兩部分,求這兩部分體積的比.

【命題意圖】本題主要考查空間線線、線面、面面垂直的判定與性質(zhì)及幾何體的體積計算,考查空間想象能力、邏輯推理能力,是簡單題.

【解析】(Ⅰ)由題設(shè)知BC⊥,BC⊥AC,,∴,    又∵,∴,

由題設(shè)知,∴=,即,

又∵,   ∴⊥面,    ∵,

∴面⊥面;

(Ⅱ)設(shè)棱錐的體積為,=1,由題意得,==,

由三棱柱的體積=1,

=1:1,  ∴平面分此棱柱為兩部分體積之比為1:1

 

查看答案和解析>>

如圖,已知直線)與拋物線和圓都相切,的焦點(diǎn).

(Ⅰ)求的值;

(Ⅱ)設(shè)上的一動點(diǎn),以為切點(diǎn)作拋物線的切線,直線軸于點(diǎn),以為鄰邊作平行四邊形,證明:點(diǎn)在一條定直線上;

(Ⅲ)在(Ⅱ)的條件下,記點(diǎn)所在的定直線為,    直線軸交點(diǎn)為,連接交拋物線、兩點(diǎn),求△的面積的取值范圍.

【解析】第一問中利用圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去)

設(shè)與拋物線的相切點(diǎn)為,又,得,.     

代入直線方程得:,∴    所以

第二問中,由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

,得切線軸的點(diǎn)坐標(biāo)為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形

因為是定點(diǎn),所以點(diǎn)在定直線

第三問中,設(shè)直線,代入結(jié)合韋達(dá)定理得到。

解:(Ⅰ)由已知,圓的圓心為,半徑.由題設(shè)圓心到直線的距離.  

,解得舍去).     …………………(2分)

設(shè)與拋物線的相切點(diǎn)為,又,得,.     

代入直線方程得:,∴    所以,.      ……(2分)

(Ⅱ)由(Ⅰ)知拋物線方程為,焦點(diǎn).   ………………(2分)

設(shè),由(Ⅰ)知以為切點(diǎn)的切線的方程為.   

,得切線軸的點(diǎn)坐標(biāo)為    所以,,    ∵四邊形FAMB是以FA、FB為鄰邊作平行四邊形,

因為是定點(diǎn),所以點(diǎn)在定直線上.…(2分)

(Ⅲ)設(shè)直線,代入,  ……)得,                 ……………………………     (2分)

,

的面積范圍是

 

查看答案和解析>>

解:(Ⅰ)設(shè),其半焦距為.則

   由條件知,得

   的右準(zhǔn)線方程為,即

   的準(zhǔn)線方程為

   由條件知, 所以,故,

   從而,  

(Ⅱ)由題設(shè)知,設(shè),,,

   由,得,所以

   而,由條件,得

   由(Ⅰ)得.從而,,即

   由,得.所以,

   故

查看答案和解析>>

如下圖,已知ABCD—A′B′C′D′是平行六面體.

(1)化簡+,并在圖中標(biāo)出其結(jié)果;

(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′對角線BC′上的34分點(diǎn),設(shè),試求α,β,γ的值.

查看答案和解析>>

(2012•江西模擬)設(shè)不在y軸負(fù)半軸的動點(diǎn)P到F(0,1)的距離比到x軸的距離大1.
(1)求P的軌跡M的方程;
(2)過F作一條直線l交軌跡M于A、B兩點(diǎn),過A,B做切線交于N點(diǎn),再過A、B作y=-1的垂線,垂足為C,D,若S△ACN+S△ANB=2S△BDN,求此時點(diǎn)N的坐標(biāo).

查看答案和解析>>


同步練習(xí)冊答案