(2)由.得.所以是首項(xiàng)為1..公差為的等差數(shù)列.------------.----------....9分 查看更多

 

題目列表(包括答案和解析)

已知等差數(shù)列{an}的首項(xiàng)為p,公差為d(d>0).對于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)數(shù)學(xué)公式的圖象分別交于點(diǎn)An與Bn(如圖所示),記Bn的坐標(biāo)為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證數(shù)列{sn}是公比絕對值小于1的等比數(shù)列;
(2)設(shè){an}的公差d=1,是否存在這樣的正整數(shù)n,構(gòu)成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
(3)(理)設(shè){an}的公差d(d>0)為已知常數(shù),是否存在這樣的實(shí)數(shù)p使得(1)中無窮等比數(shù)列{sn}各項(xiàng)的和S>2010?并請說明理由.
(4)(文)設(shè){an}的公差d=1,是否存在這樣的實(shí)數(shù)p使得(1)中無窮等比數(shù)列{sn}各項(xiàng)的和S>2010?如果存在,給出一個符合條件的p值;如果不存在,請說明理由.

查看答案和解析>>

已知等差數(shù)列{an}的首項(xiàng)為p,公差為d(d>0).對于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)的圖象分別交于點(diǎn)An與Bn(如圖所示),記Bn的坐標(biāo)為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證數(shù)列{sn}是公比絕對值小于1的等比數(shù)列;
(2)設(shè){an}的公差d=1,是否存在這樣的正整數(shù)n,構(gòu)成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
(3)(理)設(shè){an}的公差d(d>0)為已知常數(shù),是否存在這樣的實(shí)數(shù)p使得(1)中無窮等比數(shù)列{sn}各項(xiàng)的和S>2010?并請說明理由.
(4)(文)設(shè){an}的公差d=1,是否存在這樣的實(shí)數(shù)p使得(1)中無窮等比數(shù)列{sn}各項(xiàng)的和S>2010?如果存在,給出一個符合條件的p值;如果不存在,請說明理由.

查看答案和解析>>

已知正項(xiàng)數(shù)列的前n項(xiàng)和滿足:,

(1)求數(shù)列的通項(xiàng)和前n項(xiàng)和;

(2)求數(shù)列的前n項(xiàng)和;

(3)證明:不等式  對任意的,都成立.

【解析】第一問中,由于所以

兩式作差,然后得到

從而得到結(jié)論

第二問中,利用裂項(xiàng)求和的思想得到結(jié)論。

第三問中,

       

結(jié)合放縮法得到。

解:(1)∵     ∴

      ∴

      ∴   ∴  ………2分

      又∵正項(xiàng)數(shù)列,∴           ∴ 

又n=1時,

   ∴數(shù)列是以1為首項(xiàng),2為公差的等差數(shù)列……………3分

                             …………………4分

                   …………………5分 

(2)       …………………6分

    ∴

                          …………………9分

(3)

      …………………12分

        ,

   ∴不等式  對任意的,都成立.

 

查看答案和解析>>

(2006•蚌埠二模)已知等差數(shù)列{an}的首項(xiàng)為p,公差為d(d>0).對于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)f(x)=(
12
)x
的圖象分別交于點(diǎn)An與Bn(如圖所示),記Bn的坐標(biāo)為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證數(shù)列{sn}是公比絕對值小于1的等比數(shù)列;
(2)設(shè){an}的公差d=1,是否存在這樣的正整數(shù)n,構(gòu)成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
(3)(理科做,文科不做)設(shè){an}的公差d=1,是否存在這樣的實(shí)數(shù)p使得(1)中無窮等比數(shù)列{sn}各項(xiàng)的和S>2010?如果存在,給出一個符合條件的p值;如果不存在,請說明理由.(參考數(shù)據(jù):210=1024)

查看答案和解析>>

(2005•靜安區(qū)一模)已知等差數(shù)列{an}的首項(xiàng)為p,公差為d(d>0).對于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)f(x)=(
12
)x
的圖象分別交于點(diǎn)An與Bn(如圖所示),記Bn的坐標(biāo)為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證數(shù)列{sn}是公比絕對值小于1的等比數(shù)列;
(2)設(shè){an}的公差d=1,是否存在這樣的正整數(shù)n,構(gòu)成以bn,bn+1,bn+2為邊長的三角形?并請說明理由;
(3)(理)設(shè){an}的公差d(d>0)為已知常數(shù),是否存在這樣的實(shí)數(shù)p使得(1)中無窮等比數(shù)列{sn}各項(xiàng)的和S>2010?并請說明理由.
(4)(文)設(shè){an}的公差d=1,是否存在這樣的實(shí)數(shù)p使得(1)中無窮等比數(shù)列{sn}各項(xiàng)的和S>2010?如果存在,給出一個符合條件的p值;如果不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案