A.且 B.且 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)A.(選修4-4坐標(biāo)系與參數(shù)方程)已知點A是曲線ρ=2sinθ上任意一點,則點A到直線ρsin(θ+
π3
)=4
的距離的最小值是
 

B.(選修4-5不等式選講)不等式|x-log2x|<x+|log2x|的解集是
 

C.(選修4-1幾何證明選講)如圖所示,AC和AB分別是圓O的切線,且OC=3,AB=4,延長AO到D點,則△ABD的面積是
 

查看答案和解析>>

8、“a=1且b=1”是“直線x+y=0與圓(x-a)2+(y-b)2=2相切”的
充分不必要
條件(填充分不必要,必要不充分,充要,既不充分也不必要).

查看答案和解析>>

精英家教網(wǎng)A.選修4-1:幾何證明選講
如圖,圓O1與圓O2內(nèi)切于點A,其半徑分別為r1與r2(r1>r2 ).圓O1的弦AB交圓O2于點C ( O1不在AB上).求證:AB:AC為定值.
B.選修4-2:矩陣與變換
已知矩陣A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,求過橢圓
x=5cosφ
y=3sinφ
(φ為參數(shù))的右焦點,且與直線
x=4-2t
y=3-t
(t為參數(shù))平行的直線的普通方程.
D.選修4-5:不等式選講(本小題滿分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

精英家教網(wǎng)A.(不等式選講選做題)函數(shù)y=|x+1|+|x-1|的最小值是
 

B.(幾何證明選講選做題)如圖,PA切圓O于點A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點O逆時針轉(zhuǎn)60°到OD,則PD的長為
 

C.(極坐標(biāo)與參數(shù)方程選做題)在極坐標(biāo)系中,過圓ρ=6cosθ的圓心,且垂直于極軸的直線的極坐標(biāo)方程為
 

查看答案和解析>>

“a≥5且b≥3”的否定是
a<5或b<3
a<5或b<3
;“a≥5或b≤3”的否定是
a<5且b>3
a<5且b>3

查看答案和解析>>

一、選擇題

CDABA  BCBAB

二、填空題

11.     12. -1    13.1<e<2    14.     15.{-1,0}

提示:8.利用點到直線的距離公式知,即在圓內(nèi),也在橢圓內(nèi),所以過點的直線與橢圓總有兩個不同的交點.

9.可以轉(zhuǎn)化為求展開式中所有奇數(shù)項系數(shù)之和,賦值即可.

10.原問題有且僅有一個正實數(shù)解.令,則,令

,,由.又時,;,時,.所以.又

;.結(jié)合三次函數(shù)圖像即可.

15. ,

,即,當(dāng)m為整數(shù)時,值為0,m為小數(shù)時,值為-1,故所求值域為{-1,0}

 

三、解答題

16. (1)…………………3分

由條件………………………………………6分

(2),令,解得,又  所以上遞減,在上遞增…………………………13分

 

17.(1)答錯題目的個數(shù)

∴分布列為:,期望(道題)……7分

(2)設(shè)該考生會x道題,不會10-x道題,則…10分

解得:(舍),故該考生最多會3道題…………………………………13分

 

18.(1)作,垂足為,連結(jié),由題設(shè)知,底面,

中點,由知,,

從而,于是,由三垂線定理知,……………4分

(2)由題意,,所以側(cè)面,又側(cè)面,所以側(cè)面側(cè)面.作,垂足為,連接,則平面.

與平面所成的角,…………………………………7分

,得:, 又,           

因而,所以為等邊三角形.

,垂足為,連結(jié).

由(1)知,,又

平面,

是二面角的平面角………………………………………………...10分

.,,,

所以二面角……………………….13分

 

19.(1)由,得,…2分

, 兩式相減,得:

,

綜上,數(shù)列為首項為1,公比為的等比數(shù)列…………………………..…….6分

(2)由,得,所以是首項為1,,公差為的等差數(shù)列,……………………………….…………………………....9分

……………………….………………………....13分

 

 

20.(1)設(shè)點,則

所以,當(dāng)x=p時,…………………………………………………….….4分

(2)由條件,設(shè)直線,代入,得:

設(shè),則

…......................................................................................7分

….10分

,所以為定值2……………………………………………….12分

21. (1)是奇函數(shù),則恒成立,

,,故…………………….2分

(2)上單調(diào)遞減,,

只需   恒成立.

,則

,而恒成立,.….…………………….7分

 

 

(3)由(1)知,方程為,

,

當(dāng)時,,上為增函數(shù);

當(dāng)時,,上為減函數(shù);

當(dāng)時,.而,

函數(shù) 在同一坐標(biāo)系的大致圖象如圖所示,

當(dāng)時,方程無解;

當(dāng),即時,方程有一個根;

當(dāng),時,方程有兩個根.………………………………….12分

 

 


同步練習(xí)冊答案