(I)證明:, 查看更多

 

題目列表(包括答案和解析)

(I)①證明兩角和的余弦公式C(α+β):cos(α+β)=cosαcosβ-sinαsinβ;
②由C(α+β)推導(dǎo)兩角和的正弦公式S(α+β):sin(α+β)= sinαcosβ+cosαsinβ;
(Ⅱ)已知

查看答案和解析>>

(I)已知橢圓C的方程是
x2
a2
+
y2
b2
=1(a>b>0)
,設(shè)斜率為k的直線l,交橢圓C于A、B兩點,AB的中點為M.證明:當(dāng)直線l平行移動時,動點M在一條過原點的定直線上;
(Ⅱ)利用(I)所揭示的橢圓幾何性質(zhì),用作圖方法找出下面給定橢圓的中心,簡要寫出作圖步驟,并在圖中標(biāo)出橢圓的中心.

查看答案和解析>>

(I)已知橢圓C的方程是數(shù)學(xué)公式,設(shè)斜率為k的直線l,交橢圓C于A、B兩點,AB的中點為M.證明:當(dāng)直線l平行移動時,動點M在一條過原點的定直線上;
(Ⅱ)利用(I)所揭示的橢圓幾何性質(zhì),用作圖方法找出下面給定橢圓的中心,簡要寫出作圖步驟,并在圖中標(biāo)出橢圓的中心.

查看答案和解析>>

已知集合

   (I)證明:;

   (II)某同學(xué)注意到是周期函數(shù),也是偶函數(shù),于是他著手探究:M中的元素是否都是周期函數(shù)?是否都是偶函數(shù)?對這兩個問題,給出并證明你的結(jié)論.

查看答案和解析>>

(I)已知橢圓C的方程是,設(shè)斜率為k的直線l,交橢圓C于A、B兩點,AB的中點為M.證明:當(dāng)直線l平行移動時,動點M在一條過原點的定直線上;
(Ⅱ)利用(I)所揭示的橢圓幾何性質(zhì),用作圖方法找出下面給定橢圓的中心,簡要寫出作圖步驟,并在圖中標(biāo)出橢圓的中心.

查看答案和解析>>

一、選擇題

CDABA  BCBAB

二、填空題

11.     12. -1    13.1<e<2    14.     15.{-1,0}

提示:8.利用點到直線的距離公式知,即在圓內(nèi),也在橢圓內(nèi),所以過點的直線與橢圓總有兩個不同的交點.

9.可以轉(zhuǎn)化為求展開式中所有奇數(shù)項系數(shù)之和,賦值即可.

10.原問題有且僅有一個正實數(shù)解.令,則,令

,,由.又時,;,時,.所以.又

;.結(jié)合三次函數(shù)圖像即可.

15.

,即,當(dāng)m為整數(shù)時,值為0,m為小數(shù)時,值為-1,故所求值域為{-1,0}

 

三、解答題

16. (1)…………………3分

由條件………………………………………6分

(2),令,解得,又  所以上遞減,在上遞增…………………………13分

 

17.(1)答錯題目的個數(shù)

∴分布列為:,期望(道題)……7分

(2)設(shè)該考生會x道題,不會10-x道題,則…10分

解得:(舍),故該考生最多會3道題…………………………………13分

 

18.(1)作,垂足為,連結(jié),由題設(shè)知,底面,

中點,由知,,

從而,于是,由三垂線定理知,……………4分

(2)由題意,,所以側(cè)面,又側(cè)面,所以側(cè)面側(cè)面.作,垂足為,連接,則平面.

與平面所成的角,…………………………………7分

,得:, 又,           

因而,所以為等邊三角形.

,垂足為,連結(jié).

由(1)知,,又,

平面,

是二面角的平面角………………………………………………...10分

.,,

所以二面角……………………….13分

 

19.(1)由,得,…2分

, 兩式相減,得:

綜上,數(shù)列為首項為1,公比為的等比數(shù)列…………………………..…….6分

(2)由,得,所以是首項為1,,公差為的等差數(shù)列,……………………………….…………………………....9分

……………………….………………………....13分

 

 

20.(1)設(shè)點,則

所以,當(dāng)x=p時,…………………………………………………….….4分

(2)由條件,設(shè)直線,代入,得:

設(shè),則,

…......................................................................................7分

….10分

,所以為定值2……………………………………………….12分

21. (1)是奇函數(shù),則恒成立,

,,故…………………….2分

(2)上單調(diào)遞減,,

只需   恒成立.

,則

,而恒成立,.….…………………….7分

 

 

(3)由(1)知,方程為

,,

當(dāng)時,,上為增函數(shù);

當(dāng)時,上為減函數(shù);

當(dāng)時,.而

函數(shù)、 在同一坐標(biāo)系的大致圖象如圖所示,

當(dāng)時,方程無解;

當(dāng),即時,方程有一個根;

當(dāng),時,方程有兩個根.………………………………….12分

 

 


同步練習(xí)冊答案