5.已知雙曲線以坐標(biāo)原點(diǎn)為頂點(diǎn).以曲線的頂點(diǎn)為焦點(diǎn)的拋物線與曲線漸近線的一個(gè)交點(diǎn)坐標(biāo)為(4.4).則雙曲線的離心率為 查看更多

 

題目列表(包括答案和解析)

已知雙曲線以坐標(biāo)原點(diǎn)為頂點(diǎn),以曲線的頂點(diǎn)為焦點(diǎn)的拋物線與曲線漸近線的一個(gè)交點(diǎn)坐標(biāo)為(4,4),則雙曲線的離心率為                

A.               .              C.               D.

查看答案和解析>>

已知雙曲線C的兩條漸近線都過(guò)原點(diǎn),且都以點(diǎn)A(
2
,0)為圓心,1為半徑的圓相切,雙曲線的一個(gè)頂點(diǎn)A′與A點(diǎn)關(guān)于直線y=x對(duì)稱.
(1)求雙曲線C的方程;
(2)設(shè)直線l過(guò)點(diǎn)A,斜率為k,當(dāng)0<k<1時(shí),雙曲線C的上支上有且僅有一點(diǎn)B到直線l的距離為
2
,試求k的值及此時(shí)B點(diǎn)的坐標(biāo).

查看答案和解析>>

已知雙曲線方程為
x2
a2
-
y2
b2
=1(a>0,b>0)
,橢圓C以該雙曲線的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn).
(1)當(dāng)a=
3
,b=1時(shí),求橢圓C的方程;
(2)在(1)的條件下,直線l:y=kx+
1
2
與y軸交于點(diǎn)P,與橢圓交與A,B兩點(diǎn),若O為坐標(biāo)原點(diǎn),△AOP與△BOP面積之比為2:1,求直線l的方程;
(3)若a=1,橢圓C與直線l':y=x+5有公共點(diǎn),求該橢圓的長(zhǎng)軸長(zhǎng)的最小值.

查看答案和解析>>

已知雙曲線的兩條漸近線經(jīng)過(guò)坐標(biāo)原點(diǎn),且與以A(
2
,0)為圓心,1為半徑的圓相切,雙曲線的一個(gè)頂點(diǎn)A'與點(diǎn)A關(guān)于直線y=x對(duì)稱.
(1)求雙曲線的方程;
(2)是否存在過(guò)A點(diǎn)的一條直線交雙曲線于M、N兩點(diǎn),且線段MN被直線x=-1平分.如果存在,求出直線的方程;如果不存在,說(shuō)明理由.

查看答案和解析>>

已知雙曲線C1以點(diǎn)A(0,1)為頂點(diǎn),且過(guò)點(diǎn)B(-
3
,2)

(1)求雙曲線C1的標(biāo)準(zhǔn)方程;
(2)求離心率為
2
2
,且以雙曲線C1的焦距為短軸長(zhǎng)的橢圓的標(biāo)準(zhǔn)方程;
(3)已知點(diǎn)P在以點(diǎn)A為焦點(diǎn)、坐標(biāo)原點(diǎn)為頂點(diǎn)的拋物線C2上運(yùn)動(dòng),點(diǎn)M的坐標(biāo)為(2,3),求PM+PA的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

一、 A C C D A  B D B A C    D C

二、13.   14. ①甲乙的平均數(shù)相同,均為85;② 甲乙的中位數(shù)相同,均為86;       ③乙的成績(jī)較穩(wěn)定,甲的成績(jī)波動(dòng)性較大;……       15.       16.

三、17(Ⅰ)

            =

            =

得,

.

故函數(shù)的零點(diǎn)為.       ……………………………………6分

(Ⅱ)由,

.又

得 

         , 

                  ……………………………………12分

18. 由三視圖可知:,底面ABCD為直角梯形,,PB=BC=CD=1,AB=2

                            …………3分

(Ⅱ) 當(dāng)M為PB的中點(diǎn)時(shí)CM∥平面PDA.

取PB中點(diǎn)N,連結(jié)MN,DN,可證MN∥DN且MN=DN

∴CM∥DN,∴CM∥平面PDA                                …………6分

 (Ⅲ)分別以BC、BA、BP所在直線為x軸、y軸、z軸,建立空間直角坐標(biāo)系.

假設(shè)在BC邊上存在點(diǎn)Q,使得二面角A-PD-Q為  

 

同理,,可得

=,

解得………………………………………12分

19. (Ⅰ)設(shè)“世博會(huì)會(huì)徽”卡有張,由,得=6.

 故“海寶”卡有4張. 抽獎(jiǎng)?wù)攉@獎(jiǎng)的概率為.                 …………6分

(Ⅱ),    的分布列為

  

1

2

3

4

 

p

                                                                         ………………………………12分

20. (Ⅰ)證明 設(shè)

相減得  

注意到  

有        

即                        …………………………………………5分

(Ⅱ)①設(shè)

由垂徑定理,

即       

化簡(jiǎn)得  

當(dāng)軸平行時(shí),的坐標(biāo)也滿足方程.

故所求的中點(diǎn)的軌跡的方程為;

…………………………………………8分

②     假設(shè)過(guò)點(diǎn)P(1,1)作直線與有心圓錐曲線交于兩點(diǎn),且P為的中點(diǎn),則

         

由于 

直線,即,代入曲線的方程得

         即    

          得.

故當(dāng)時(shí),存在這樣的直線,其直線方程為;

當(dāng)時(shí),這樣的直線不存在.        ………………………………12分

21. (Ⅰ)

得                   …………………………3分     

   

當(dāng)時(shí),當(dāng)時(shí),

故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.   ………………………5分

(Ⅱ)由(Ⅰ)

得 

當(dāng)時(shí),當(dāng)時(shí),

處取得極大值,

……………………………………7分

(1)       當(dāng)時(shí),函數(shù)在區(qū)間為遞減 ,

(2)     當(dāng)時(shí), ,

(3)       當(dāng)時(shí),函數(shù)在區(qū)間為遞增 ,

                                  

                                          ………………………………………12分

22. (Ⅰ)

         

              …………………………………6分

(Ⅱ)解法1:由,得

猜想時(shí),一切時(shí)恒成立.

①當(dāng)時(shí),成立.

②設(shè)時(shí),,則由

=

*時(shí),

由①②知時(shí),對(duì)一切,有.   ………………………………10分

解法2:假設(shè)

,可求

故存在,使恒成立.            …………………………………10分

(Ⅲ)證法1:

,由(Ⅱ)知

                                     …………………………………14分

證法2:

猜想.數(shù)學(xué)歸納法證明

①當(dāng)時(shí),成立

②假設(shè)當(dāng)時(shí),成立

由①②對(duì),成立,下同證法1。

                                            …………………………………14分

 

 

 

 

 


同步練習(xí)冊(cè)答案