下列結(jié)論: 查看更多

 

題目列表(包括答案和解析)

下列結(jié)論:①(3)′=0,②(sinx)′=cosx,③(ex)′=ex,④(lnx)′=
1
x
,其中正確的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

下列結(jié)論:①已知命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0.則命題“p∧?q”是假命題;②函數(shù)y=
|x|
x2+1
的最小值為
1
2
且它的圖象關(guān)于y軸對稱;③函數(shù)f(x)=lnx+2x-6在定義域上有且只有一個零點.其中正確命題的序號為
 
.(把你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

下列結(jié)論:
①當(dāng)a為任意實數(shù)時,直線(a-1)x-y+2a+1=0恒過定點P,則過點P且焦點在y軸上的拋物線的標(biāo)準(zhǔn)方程是x2=
4
3
y
;
②已知雙曲線的右焦點為(5,0),一條漸近線方程為2x-y=0,則雙曲線的標(biāo)準(zhǔn)方程是
x2
5
-
y2
20
=1
;
③拋物線y=ax2(a≠0)的準(zhǔn)線方程為y=-
1
4a
;
④已知雙曲線
x2
4
+
y2
m
=1
,其離心率e∈(1,2),則m的取值范圍是(-12,0).
其中所有正確結(jié)論的個數(shù)是
 

查看答案和解析>>

下列結(jié)論:
①若命題p:存在x∈R,使得tanx=1;命題q:對任意x∈R,x2-x+1>0,則命題“p且?q”為假命題.
②已知直線l1:ax+3y-1=0,l2:x+by+1=0.則l1⊥l2的充要條件為
ab
=-3

③命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1則x2-3x+2≠0”;
其中正確結(jié)論的序號為
 

查看答案和解析>>

下列結(jié)論:
①若命題p:?x0∈R,tanx0=1;命題q:?x∈R,x2-x+1>0,則命題“p∧?q”是假命題;
②某校在一次月考中約有1000人參加考試,數(shù)學(xué)考試的成績,統(tǒng)計結(jié)果顯示數(shù)字考試成績在70分到110分之間的人數(shù)約為總?cè)藬?shù)的
3
5
,則此次月考中數(shù)學(xué)考試成績不低于110分的學(xué)生約有200人;
③在線性回歸分析中,殘差的平方和越小,說明模型的擬合效果越好;
④對分類變量X與Y,它們的隨機變量K2的觀測值為k,若k越大,則“X與Y有關(guān)系”的把握程度越大,其中結(jié)論正確的個數(shù)為
(  )
A、4B、3C、2D、1

查看答案和解析>>

一、 A C C D A  B D B A C    D C

二、13.   14. ①甲乙的平均數(shù)相同,均為85;② 甲乙的中位數(shù)相同,均為86;       ③乙的成績較穩(wěn)定,甲的成績波動性較大;……       15.       16.

三、17(Ⅰ)

            =

            =

得,

.

故函數(shù)的零點為.       ……………………………………6分

(Ⅱ)由,

.又

得 

         , 

                  ……………………………………12分

18. 由三視圖可知:,底面ABCD為直角梯形,,PB=BC=CD=1,AB=2

                            …………3分

(Ⅱ) 當(dāng)M為PB的中點時CM∥平面PDA.

取PB中點N,連結(jié)MN,DN,可證MN∥DN且MN=DN

∴CM∥DN,∴CM∥平面PDA                                …………6分

 (Ⅲ)分別以BC、BA、BP所在直線為x軸、y軸、z軸,建立空間直角坐標(biāo)系.

假設(shè)在BC邊上存在點Q,使得二面角A-PD-Q為  

 

同理,,可得

=,

解得………………………………………12分

19. (Ⅰ)設(shè)“世博會會徽”卡有張,由,得=6.

 故“海寶”卡有4張. 抽獎?wù)攉@獎的概率為.                 …………6分

(Ⅱ),    的分布列為

  

1

2

3

4

 

p

                                                                         ………………………………12分

20. (Ⅰ)證明 設(shè)

相減得  

注意到  

有        

即                        …………………………………………5分

(Ⅱ)①設(shè)

由垂徑定理,

即       

化簡得  

當(dāng)軸平行時,的坐標(biāo)也滿足方程.

故所求的中點的軌跡的方程為;

…………………………………………8分

②     假設(shè)過點P(1,1)作直線與有心圓錐曲線交于兩點,且P為的中點,則

         

由于 

直線,即,代入曲線的方程得

         即    

          得.

故當(dāng)時,存在這樣的直線,其直線方程為;

當(dāng)時,這樣的直線不存在.        ………………………………12分

21. (Ⅰ)

得                   …………………………3分     

   

當(dāng)時,當(dāng)時,

故函數(shù)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.   ………………………5分

(Ⅱ)由(Ⅰ)

得 

當(dāng)時,當(dāng)時,

處取得極大值,

……………………………………7分

(1)       當(dāng)時,函數(shù)在區(qū)間為遞減 ,

(2)     當(dāng)時, ,

(3)       當(dāng)時,函數(shù)在區(qū)間為遞增 ,

                                  

                                          ………………………………………12分

22. (Ⅰ)

         

              …………………………………6分

(Ⅱ)解法1:由,得

猜想時,一切恒成立.

①當(dāng)時,成立.

②設(shè)時,,則由

=

*時,

由①②知時,對一切,有.   ………………………………10分

解法2:假設(shè)

,可求

故存在,使恒成立.            …………………………………10分

(Ⅲ)證法1:

,由(Ⅱ)知

                                     …………………………………14分

證法2:

猜想.數(shù)學(xué)歸納法證明

①當(dāng)時,成立

②假設(shè)當(dāng)時,成立

由①②對成立,下同證法1。

                                            …………………………………14分

 

 

 

 

 


同步練習(xí)冊答案