(2)若的圓心在直線上.求橢圓的方程. 查看更多

 

題目列表(包括答案和解析)

橢圓的方程為,斜率為1的直線與橢圓交于兩點(diǎn).

(Ⅰ)若橢圓的離心率,直線過(guò)點(diǎn),且,求橢圓的方程;

(Ⅱ)直線過(guò)橢圓的右焦點(diǎn)F,設(shè)向量,若點(diǎn)在橢圓上,求 的取值范圍.

 

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓和拋物線的方程;
(2)過(guò)點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
(3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說(shuō)明理由.

查看答案和解析>>

橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓和拋物線的方程;
(2)過(guò)點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
(3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說(shuō)明理由.

查看答案和解析>>

橢圓的方程為,斜率為1的直線與橢圓交于兩點(diǎn).
(Ⅰ)若橢圓的離心率,直線過(guò)點(diǎn),且,求橢圓的方程;
(Ⅱ)直線過(guò)橢圓的右焦點(diǎn)F,設(shè)向量,若點(diǎn)在橢圓上,求的取值范圍.

查看答案和解析>>

精英家教網(wǎng)設(shè)橢圓的方程為
x2
a2
+
y2
b2
=1
(a>b>0),線段PQ是過(guò)左焦點(diǎn)F且不與x軸垂直的焦點(diǎn)弦.若在左準(zhǔn)線上存在點(diǎn)R,使△PQR為正三角形,求橢圓的離心率e的取值范圍,并用e表示直線PQ的斜率.

查看答案和解析>>

一.選擇題:BAAC  ADBC

解析:

1.,復(fù)數(shù)  對(duì)應(yīng)的點(diǎn)為,它與原點(diǎn)的距離是,故選B.

2.,但.故選A.

3.∵是等差數(shù)列,,,∴,,

,故選A.

4.依題意知,,,又,,,故選C.

5.把直線向下平移二個(gè)單位,則點(diǎn)到直線的距離就相等了,故點(diǎn)的軌跡為拋物線,它的方程為,選A.

6.由三視圖知該工作臺(tái)是棱長(zhǎng)為80的正方體上面圍上一塊矩形和兩塊直角三角形合

板,如右圖示,則用去的合板的面積故選D.

7.,故選B.

8.由,可得: 知滿足事件A的區(qū)域的面積

,而滿足所有條件的區(qū)域的面積:,從而,

得:,故選C.

二.填空題:9.18 ; 10.2;11. ;12. 、;13. ;14.;15.

解析:9.按系統(tǒng)抽樣的方法,樣本中4位學(xué)生的座位號(hào)應(yīng)成等差數(shù)列,將4位學(xué)生的座位號(hào)按從小到大排列,顯然6,30不可能相鄰,也就是中間插有另一位同學(xué),其座位號(hào)為(6+30)÷2=18,故另一位同學(xué)的座位號(hào)為18.

10. ,令

從而展開(kāi)式中的系數(shù)是,故填2.

11.

,故填.

12.設(shè)人經(jīng)過(guò)時(shí)間ts后到達(dá)點(diǎn)B,這時(shí)影長(zhǎng)為AB=S,如圖由平幾的

知識(shí)可得,=,由導(dǎo)數(shù)的意義知人影長(zhǎng)度

的變化速度v=(m/s)

13.曲線為拋物線段 借助圖形直觀易得

14. ,由柯西不等式得:

.

15.由切割線定理得,,

連結(jié)OC,則,,

三.解答題:

16.解:(1)---3分

∴函數(shù)的最小正周期為,值域?yàn)?sub>。--------------------------------------5分

(2)解法1:依題意得: ---------------------------6分

   ∴

-----------------------------------------8分

------------------------------------------------------------------------------12分

解法2:依題意得: ----①-----------7分

   ∴

---------------------------------9分

-----------②----------------10分

①+②得,∴-------------------------12分

解法3:由,--------------------7分

兩邊平方得,,--------------------------8分

  ∴

--------------------------------------9分

,得--------------------10分

.---------------------------------12分

17.解:(1)不論點(diǎn)上的任何位置,都有平面垂直于平面.---1分

證明如下:由題意知,,

    平面

平面   平面平面.------------------4分

(2)解法一:過(guò)點(diǎn)P作,垂足為,連結(jié)(如圖),則,

是異面直線所成的角.----------------------6分

中 ∵   ∴

,   ,      

 

中,

.----------8分

異面異面直線所成角的余弦值為.----------------9分

解法二:以為原點(diǎn),所在的直線為x軸建立空間直角坐標(biāo)系如圖示,則,,,

-----6分

∴異面異面直線所成角的余弦值為.-----9分

(3)由(1)知,平面

與平面所成的角,---------------------------10分

.------------------------------------11分

當(dāng)最小時(shí),最大,這時(shí),由--13分

,即與平面所成角的正切值的最大值.---14分

18.解:  用A,B,C分別表示事件甲、乙、丙面試合格.由題意知A,B,C相互獨(dú)立,

.------------------------------------------------------2分

(1)至少有1人面試合格的概率是

----------------------4分

(2)的可能取值為0,1,2,3.----------------------------------------------------------5分

     ∵

             =

              =---------------------------6分

     

              =

              =--------------------------------7分

      ---------------------8分

      ----------------------9分

的分布列是

0

1

2

3

-------------10分

的期望----------------------------------------12分

19.解:(1)當(dāng)時(shí),∵,∴

,,點(diǎn),,------------2分

設(shè)的方程為

  由過(guò)點(diǎn)F,B,C得

-----------------①

-----------------②

-------------------③----------------------------5分

由①②③聯(lián)立解得,,-----------------------7分

∴所求的的方程為-------------8分

(2)∵過(guò)點(diǎn)F,B,C三點(diǎn),∴圓心P既在FC的垂直平分線上,也在BC的垂直平分線上,F(xiàn)C的垂直平分線方程為--------④----------------------9分

∵BC的中點(diǎn)為,

∴BC的垂直平分線方程為-----⑤---------------------10分

由④⑤得,即----------------11分

∵P在直線上,∴

  ∴

-------------------------------------------13分

∴橢圓的方程為--------------------------------------------------------------14分

20.解:(1)當(dāng)

同步練習(xí)冊(cè)答案