題目列表(包括答案和解析)
(08年海淀區(qū))(13分) 已知函數
(I)求函數的單調遞減區(qū)間;
(II)當的最大值和最小值。
(07年四川卷)已知拋物線上存在關于直線對稱的相異兩點、,則等于( 。
(A)3 (B)4 (C) (D)
(08年海淀區(qū))(14分) 已知等差數列是等比數列,
(I)求數列的通項公式;
(II)記
(2009年廣東卷)已知等比數列的公比為正數,且?=2,=1,則=
A. B. C. D.2
(07年四川卷)(12分)已知,,且.
(Ⅰ)求的值;
(Ⅱ)求.
1、B
2、D
3、A
4、[解法一]設
而
又∵在復平面上對應的點在第二、四象限的角平分線上,
∴,得.
∴. 即;,
當時,有,即,得.
當時,同理可得.
[解法二],∴,
得
或 得.
當時,有,即,得.
當時,同理可得.
5、解:由
由得
故
當且僅當時,即時,上式取等號.
所以當時,函數取最大值
6、D
7、解:因為
因為
于是
由此得OP⊥OQ,|OP|=|OQ| .
由此知△OPQ有兩邊相等且其夾角為直角,故△OPQ為等腰直角三角形。
8、B
9、解:設Z1,Z3對應的復數分別為
依題設得
10、A
11、(1)
(2)
12、,或
13、解:(Ⅰ)由
,
得. ……4分
因為 ,,
所以 . ……6分
(Ⅱ)因為,
所以 ,而,所以,
,同理, .
由(Ⅰ)知 ,
即 ,
所以 的實部為, ……8分
而的輻角為時,復數的實部為
,
所以 ……12分
14、C
15、[解](1)由題設,,
于是由, …(3分)
因此由,
得關系式 …(5分)
[解](2)設點在直線上,則其經變換后的點滿足
, …(7分)
消去,得,
故點的軌跡方程為 …(10分)
[解](3)假設存在這樣的直線,∵平行坐標軸的直線顯然不滿足條件,
∴所求直線可設為, …(12分)
[解法一]∵該直線上的任一點,其經變換后得到的點
仍在該直線上,
∴,
即,
當時,方程組無解,
故這樣的直線不存在。 …(16分)
當時,由
得,
解得或,
故這樣的直線存在,其方程為或, …(18分)
[解法二]取直線上一點,其經變換后的點仍在該直線上,
∴,
得, …(14分)
故所求直線為,取直線上一點,其經變換后得到的點仍在該直線上。
∴, …(16分)
即,得或,
故這樣的直線存在,其方程為或, …(18分)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com