18. 某觀測站C在城A的南偏西20°的方向上.由A城出發(fā)有一條公路.走向是南偏東40°.在C處測得距C為31千米的公路上B處有一人正沿公路向A城走去.走了20千米后.到達D處.此時C.D間距離為21千米.問這人還需要走多少千米到達A城? 查看更多

 

題目列表(包括答案和解析)

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―5 BCBAB    6―10 DCCCD    11―12 DB

二、填空題:本大題共4個小題,每小題4分,共16分。

13.    14.1:2    15.①②⑤    16.⑤

20090203

17.(本小題滿分12分)

    解:(I)共線

   

     ………………3分

    故 …………6分

   (II)

   

      …………12分

18.(本小題滿分12分)

解:根據題意得圖02,其中BC=31千米,BD=20千米,CD=21千米

∠CAB=60˚.設∠ACD = α ,∠CDB = β .

.……9分

在△ACD中,由正弦定理得:

19.(本小題滿分12分)

解:(1)連結OP,∵Q為切點,PQOQ,

由勾股定理有,

又由已知

即: 

化簡得 …………3分

   (2)由,得

…………6分

故當時,線段PQ長取最小值 …………7分

   (3)設⊙P的半徑為R,∵⊙P與⊙O有公共點,⊙O的半徑為1,

即R且R

故當時,,此時b=―2a+3=

得半徑最最小值時⊙P的方程為…………12分

20.(本小題滿分12分)

解:(I)過G作GM//CD交CC1于M,交D1C于O。

<span id="zzm5z"><dfn id="zzm5z"></dfn></span>

        1. ∵G為DD1的中點,∴O為D1C的中點

          從而GO

          故四邊形GFBO為平行四邊形…………3分

          ∴GF//BO

          又GF平面BCD1,BO平面BCD1

          ∴GF//平面BCD1。 …………5分

             (II)過A作AH⊥DE于H,

          過H作HN⊥EC于N,連結AN。

          ∵DC⊥平面ADD1A1,∴CD⊥AH。

          又∵AH⊥DE,∴AH⊥平面ECD。

          ∴AH⊥EC。 …………7分

          又HN⊥EC

          ∴EC⊥平面AHN。

          故AN⊥∴∠ANH為二面角A―CE―D的平面角 …………9分

          在Rt△EAD中,∵AD=AE=1,∴AH=

          在Rt△EAC中,∵EA=1,AC=

            …………12分

          21.(本小題滿分12分)

          解:(I)

           

             (II)

             (III)令上是增函數

          22.(本小題滿分12分)

          解:(I)

          單調遞增。 …………2分

          ,不等式無解;

          ;

          所以  …………5分

             (II), …………6分

                                   …………8分

          因為對一切……10分

             (III)問題等價于證明,

          由(1)可知

                                                             …………12分

          易得

          當且僅當成立。

                                                           …………14分

           

           

           


          同步練習冊答案