.或 .或 查看更多

 

題目列表(包括答案和解析)

.冪函數(shù)y=(m2m-1)xm2-2m-3,當(dāng)x∈(0,+∞)時(shí)為減函數(shù),則實(shí)數(shù)m的值為(  )

A.m=2                                 B.m=-1

C.m=-1或2                           D.m

查看答案和解析>>

.過點(diǎn)P(0,1)且和A(3,3),B(5,-1)的距離相等的直線方程是(  )

A.y=1

B.2xy-1=0

C.y=1或2xy-1=0

D.2xy-1=0或2xy+1=0

查看答案和解析>>

.三、解答題:本大題共6小題,共75分. 解答應(yīng)寫出文字說明、證明過程或演算步驟.
16. (本題滿分12分)
已知函數(shù)為偶函數(shù), 且
(1)求的值;
(2)若為三角形的一個(gè)內(nèi)角,求滿足的值.

查看答案和解析>>

.(本小題滿分12分)
某地區(qū)對(duì)12歲兒童瞬時(shí)記憶能力進(jìn)行調(diào)查.瞬時(shí)記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人.

    視覺        
視覺記憶能力
偏低
中等
偏高
超常
聽覺
記憶
能力
偏低
0
7
5
1
中等
1
8
3

偏高
2

0
1
超常
0
2
1
1
由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機(jī)抽取一個(gè),視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為
(1)試確定、的值;
(2)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生的概率;
(3)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望

查看答案和解析>>

”是“”的(    )

A.充分不必要條件     B.必要不充分條件    C.充要條件     D.既不充分也不必要條件

 

查看答案和解析>>

一、選擇題 CAADD    ABDAB   CB

二、填空題               

三、解答題

     

               

               

               

       的周期為,最大值為

       ,

          得

         ∴的單調(diào)減區(qū)間為

事件,表示甲以獲勝;表示乙以獲勝,、互斥,

    ∴

  

事件,表示甲以獲勝;表示甲以獲勝, 互斥,

   延長、交于,則

      連結(jié),并延長交延長線于,則,

      在中,為中位線,,

      又,

       ∴

      中,

,又,

,∴,

為平面與平面所成二面角的平面角。

,

∴所求二面角大小為

,,

    知,,同理,

    又

構(gòu)成以為首項(xiàng),以為公比的等比數(shù)列。

,即

     

     

     

     

,且的圖象經(jīng)過點(diǎn),

     ∴,的兩根.

     ∴

   ∴

要使對(duì),不等式恒成立,

只需即可.

,

上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減.

,,

,

解得,即為的取值范圍.

由題意知,橢圓的焦點(diǎn),,頂點(diǎn),,

     ∴雙曲線,

     ∴的方程為:

聯(lián)立,得

,

設(shè),,

,即,

,

,

由①②得的范圍為

 

 

 

 


同步練習(xí)冊(cè)答案