即當(dāng)為奇數(shù)時命題成立.-----------------------11分 查看更多

 

題目列表(包括答案和解析)

已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

(Ⅰ)若 ,是否存在,有?請說明理由;

(Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;

(Ⅲ)若試確定所有的p,使數(shù)列中存在某個連續(xù)p項(xiàng)的和式數(shù)列中的一項(xiàng),請證明.

【解析】第一問中,由,整理后,可得、,為整數(shù)不存在、,使等式成立。

(2)中當(dāng)時,則

,其中是大于等于的整數(shù)

反之當(dāng)時,其中是大于等于的整數(shù),則,

顯然,其中

滿足的充要條件是,其中是大于等于的整數(shù)

(3)中設(shè)當(dāng)為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

當(dāng)為偶數(shù)時,式不成立。由式得,整理

當(dāng)時,符合題意。當(dāng),為奇數(shù)時,

結(jié)合二項(xiàng)式定理得到結(jié)論。

解(1)由,整理后,可得、,為整數(shù)不存在、,使等式成立。

(2)當(dāng)時,則,其中是大于等于的整數(shù)反之當(dāng)時,其中是大于等于的整數(shù),則,

顯然,其中

、滿足的充要條件是,其中是大于等于的整數(shù)

(3)設(shè)當(dāng)為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

當(dāng)為偶數(shù)時,式不成立。由式得,整理

當(dāng)時,符合題意。當(dāng),為奇數(shù)時,

   由,得

當(dāng)為奇數(shù)時,此時,一定有使上式一定成立。當(dāng)為奇數(shù)時,命題都成立

 

查看答案和解析>>

1、一個關(guān)于自然數(shù)n的命題,如果驗(yàn)證當(dāng)n=1時命題成立,并在假設(shè)當(dāng)n=k(k≥1且k∈N*)時命題成立的基礎(chǔ)上,證明了當(dāng)n=k+2時命題成立,那么綜合上述,對于( 。

查看答案和解析>>

對任意正整數(shù),定義的雙階乘如下:

當(dāng)為偶數(shù)時,

當(dāng)為奇數(shù)時,`

現(xiàn)有四個命題:①,  ②

個位數(shù)為0,         ④個位數(shù)為5

其中正確的個數(shù)為

A.1                B.2               C.3                D.4

查看答案和解析>>

對任意正整數(shù),定義的雙階乘如下:

當(dāng)為偶數(shù)時,

當(dāng)為奇數(shù)時,`

現(xiàn)有四個命題:①,  ②,

個位數(shù)為0,         ④個位數(shù)為5

其中正確的個數(shù)為

A.1                B.2               C.3                D.4

查看答案和解析>>

對任意正整數(shù),定義的雙階乘如下:

當(dāng)為偶數(shù)時,

當(dāng)為奇數(shù)時,

現(xiàn)有四個命題:①,  ②

個位數(shù)為0,         ④個位數(shù)為5

其中正確的個數(shù)為( ▲ )

A.1                B.2               C.3                D.4

 

查看答案和解析>>


同步練習(xí)冊答案