(2)與, 查看更多

 

題目列表(包括答案和解析)

與正方體ABCD-A1B1C1E1的三條棱AB、CC1、A1D1所在直線的距離相等的點①有且只有1個; ②有且只有2個;③有且只有3個; ④有無數(shù)個.其中正確答案的序號是
 

查看答案和解析>>

精英家教網(wǎng)與向量、圓交匯.例5:已知F1、F2分別為橢圓C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦點,其中F1也是拋物線C2:x2=4y的焦點,點M是C1與C2在第二象限的交點,且|MF1|=
5
3

(1)求橢圓C1的方程;
(2)已知點P(1,3)和圓O:x2+y2=b2,過點P的動直線l與圓O相交于不同的兩點A,B,在線段AB上取一點Q,滿足:
AP
=-λ
PB
,
AQ
QB
,(λ≠0且λ≠±1).問點Q是否總在某一定直線上?若在,求出這條直線,否則,說明理由.

查看答案和解析>>

與函數(shù)f (x)有關(guān)的奇偶性,有下列三個命題:
①若f (x)為奇函數(shù),則f (0)=0;
②若f (x)的定義域內(nèi)含有非負(fù)實數(shù),則f(|x|)必為偶函數(shù);
③若f (-x)有意義,則f (x)必能寫成一個奇函數(shù)與一個偶函數(shù)之和.
其中,真命題為
 
(寫出你認(rèn)為正確的所有命題的代號)

查看答案和解析>>

與雙曲線=1有共同的漸近線,且過點(-3,2);求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

與函數(shù)的圖象相同的函數(shù)是 (   )

A.;B.;C.; D.

查看答案和解析>>

一、       

二、13.;14.;15.;16.

詳細(xì)參考答案:

1.∵,∴ ,又∵ ,∴ ,選擇B

2.∵,∴ ,選擇D

3.因為陰影部分在集中又在集中,所陰影部分是,選擇A

4.∵的定義域是 ,∴,選擇C

5.∵,∴選擇A

6.由映射的定義:A、B、C不是映射,D是映射.

7.∵上是減函數(shù),∴,即

8.,或,即

9.當(dāng)時,則,由當(dāng)時,得,,又是奇函數(shù),,所以,即

10.∵ ,

    ∴ ,選擇A

11.在A中,由圖像看,直線應(yīng)與軸的截距;在B圖中,經(jīng)過是錯誤的;在D中,經(jīng)過是錯誤的,選擇C

12.根據(jù)奇函數(shù)圖像關(guān)于原點對稱,作出函數(shù)圖像,則不等式

 ,或,所以選擇D

13.∵是偶函數(shù),∴,∴的增函數(shù)區(qū)間是

14.∵,,且,,∴,,則

15.∵在區(qū)間上是奇函數(shù),∴,∴在區(qū)間上的最小值為

16.函數(shù)圖像如圖,方程等價于,或

17.解:∵,,

,,---------6分

,

,--------------8分

.-------------------12分

18.解:(1)∵,∴ 的對應(yīng)法則不同,值域也不同,因此是不同的函數(shù);

   (2)∵,∴ 的定義域不同,值域也不同,因此是不同的函數(shù);

   (3)∴ 的定義域相同,對應(yīng)法則相同,值域也相同,因此是同一的函數(shù).

19.解:∵,∴ ,以下分討論:------------4分

(i)                    若時,則;------------7分

(ii)                  若時,則.--------11分

綜上所述:實數(shù)的取值范圍是.-------------------12分

20.解:(1)是偶函數(shù).∵ 的定義域是,設(shè)任意,都有,∴是偶函數(shù).-----------5分

 (2)函數(shù)上是增函數(shù).設(shè)任意,,且時,

,∴ ,,

, 即 ,-----------------11分

故函數(shù)上是增函數(shù).----------------------12分

21.解:(1)∵ ,,-----------2分

又  ---------①

 ∴    ,

  即  ---------②-----------3分

由①、② 得:,,-----------5分

(2) ,----------6分

  (i)當(dāng)時,函數(shù)的最小值為;-----8分

(ii)當(dāng)時,函數(shù)的最小值為;---10分

(iii)當(dāng)時,函數(shù)的最小值為.------12分

22.解:(1)依題意有:,即……①,(i)當(dāng)時,方程①無解,∴當(dāng)時,無迭代不動點;(ii)當(dāng)時,方程①有無數(shù)多解,∴當(dāng)時,也無迭代不動點;(iii)當(dāng)時,方程①有唯一解有迭代不動點.-------------6分

(2)設(shè),顯然時,不滿足關(guān)系式,于是,則:

.------8分

……

即:,比較對應(yīng)的系數(shù):解之:,所以.----------14分.


同步練習(xí)冊答案