19. 查看更多

 

題目列表(包括答案和解析)

本題滿分14分)已知函數,,其中.w.w.w.k.s.5.u.c.o.m    

   (I)設函數.若在區(qū)間上不單調,求的取值范圍;

   (II)設函數  是否存在,對任意給定的非零實數,存在惟一的非零實數),使得成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

(本題滿分14分) 若F1、F2為雙曲線的左、右焦點,O為坐標原點,P在雙曲線左支上,M在右準線上,且滿足(Ⅰ)求此雙曲線的離心率;(Ⅱ)若此雙曲線過點,求雙曲線方程;(Ⅲ)設(Ⅱ)中雙曲線的虛軸端點為B1,B2(B1在y軸正半軸上),求B2作直線AB與雙曲線交于A、B兩點,求時,直線AB的方程.

查看答案和解析>>

(本題滿分14分)某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層,每層2000平方米的樓房。經測算,如果將樓房建為x(x ≥ 10)層,則每平方米的平均建筑費用為560 + 48x(單位:元).⑴寫出樓房平均綜合費用y關于建造層數x的函數關系式;

⑵該樓房應建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?

(注:平均綜合費用 = 平均建筑費用 + 平均購地費用,平均購地費用 = )

查看答案和解析>>

(本題滿分14分)如圖,已知二次函數,直線lx = 2,直線ly = 3tx(其中1< t < 1,t為常數);若直線l、l與函數的圖象所圍成的封閉圖形如圖(5)陰影所示.(1)求y = ;(2)求陰影面積s關于t的函數s = u(t)的解析式;(3)若過點A(1,m)(m≠4)可作曲線s=u(t)(tR)的三條切線,求實數m的取值范圍.

查看答案和解析>>

(本題滿分14分)

在梯形ABCD中,AB⊥AD,AB∥CD,A、B是兩個定點,其坐

標分別為(0,-1)、(0,1),C、D是兩個動點,且滿足|CD|=|BC|.

(1)求動點C的軌跡E的方程;

(2)試探究在軌跡E上是否存在一點P?使得P到直線y=x-2的

距離最短;

(3)設軌跡E與直線所圍成的圖形的

面積為S,試求S的最大值。

其它解法請參照給分。

查看答案和解析>>

一、選擇題(每小題5分,共40分)

1.D    2.B    3.B    4.B    5.C     6.D    7.C     8.A

解:5.C  ,相切時的斜率為

6.D 

7.C  

       

8.A  原方程可化為[(3x+y)2009+(3x+y)]+(x2009+x)=0,設函數f(x)=x2009+x,

顯然該函數為奇函數,且在R上是增函數,則原方程為f(3x+y)+f(x)=0,

即f(3x+y)=-f(x)= f(-x),所以3x+y=-x,故4x+y=0

二、填空題(每小題5分,共30分)

9.

10.  位執(zhí)“一般”對應位“不喜歡”,即“一般”是“不喜歡”的倍,而他們的差為 人,即“一般”有人,“不喜歡”的有人,且“喜歡”是“不喜歡”的5倍,即人.

11.-192

12.;根據題中的信息,可以把左邊的式子歸納為從個球(n個白球,k個黑球中取出m個球,可分為:沒有黑球,一個黑球,……,k個黑球等類,故有種取法.

13.5;    14、;

15.16; 由可化為xy =8+x+y,  x,y均為正實數

 xy =8+x+y

(當且僅當x=y等號成立)即xy-2-8可解得,

即xy16故xy的最小值為16.

三、解答題:(本大題共6小題,共80分,解答應寫出文字說明,證明過程或演算步驟)。

16、(本題滿分12分)

解:Ⅰ)在中,

cosA=,又A是的內角,∴A=                  …………6分

(Ⅱ)由正弦定理,又,故  …………8分

即:  故是以為直角的直角三角形     …………10分

又∵A=, ∴B=                                                …………12分

17.(本題滿分14分)

解:(I)所求x的可能取值為6、7、8、9                         …………1分

           

…………7分  

(II)

         ∴線路通過信息量的數學期望

          EX        ……13分

答:(I)線路信息暢通的概率是. (II)線路通過信息量的數學期望是……14分

18.(本題滿分14分)

解:(Ⅰ)建立如圖所示的空間直角坐標系,   ……1分

    、、

    、,

    從而  ……3分

    的夾角為,則

     ……6分

     ∴所成角的余弦值為    ……7分

    (Ⅱ)由于點在側面內,故可設點坐標為,

     則,                         ……9分

    可得,

     

     ∴                             ……13分

    ∴在側面內所求點的坐標為   ………14分

    (其它解法參照給分)

    19.(本小題滿分14分)

    解:(1)由已知得 化簡得         …………2分

        即有唯一解

         所以△ 即    ……5分

    消去,

    解得                          ……7分

       (2)

                             ……9分

                                  ……10分

    上為單調函數,則上恒有成立!12分

    的圖象是開口向下的拋物線,所以△=122+24(-2-2m)≤0,

    解得   即所求的范圍是[2,+            ……14分

    20.(本小題滿分14分)

    解:(1)由已知    公差  ……1分

                           ……2分

                    …………4分

    由已知           ……5分  所以公比

                 ………7分

     (2)設

                                     ………8分

    所以當時,是增函數。                           ………10分

    ,所以當,                   ………12分

    ,                              ………13分

    所以不存在,使。                           ………14分

    21.(14分)解:(1)設C(x,y),∵M點是ΔABC的重心,∴M(,).

    又||=||且向量共線,∴N在邊AB的中垂線上,∴N(0,).

    而||=||,∴=,   即x2 =a2. ……6分

    (2)設E(x1,y1),F(x2,y2),由題意知直線L斜率存在,可設L方程為y=kx+a,…7分

    代入x2 =a2得 (3-k2)x2-2akx-4a2=0

    ∴Δ=4a2k2+16a2(3-k2)>0,即k2<4.∴k2-3<1,

    >4或<0.                     ……9分

    而x1,x2是方程的兩根,∴x1+x2=,x1x2=.            ……10分

    ?=(x1,y1-a)?(x2,y2-a)= x1x2+kx1?kx2=(1+k2) x1x2=

    =4a2(1+)∈(-∞,4a2)∪(20a2,+∞).

    ?的取值范圍為(-∞,4a2)∪(20a2,+∞).               ……14分

     

     


    同步練習冊答案