為.又移到地面B點處測得塔頂點D的仰角為. 查看更多

 

題目列表(包括答案和解析)

(2011•開封一模)如圖,山頂上有一塔,為了測量塔高,測量人員在山腳下A點處測得塔底C的仰角為60°,移動am后到達(dá)B點,又測得塔底C點的仰角為30°,測得塔尖D點的仰角為45°,求塔高CD.

查看答案和解析>>

如圖,山頂上有一塔,為了測量塔高,測量人員在山腳下A點處測得塔底C的仰角為60°,移動am后到達(dá)B點,又測得塔底C點的仰角為30°,測得塔尖D點的仰角為45°,求塔高CD.

查看答案和解析>>

如圖,在山頂上有一塔,為了測量塔高,測量人員在山腳下A點處測得塔底C的仰角為600,移動100m后到達(dá)B點,又測得塔底C點得仰角為300,測得塔尖D的仰角為450,求塔高CD.

【解析】本試題主要是考查了解三角形中正弦定理的運用以及余弦定理的綜合運用。

 

查看答案和解析>>

如圖1,某學(xué)校田徑場上有一旗桿OP,為了測量它的高度,在地面上選一基線AB,設(shè)其長度為d,在A點處測得P點的仰角為α,在B點處測得P點的仰角為β.
(1)若AB=20,α=30°,β=45°,且∠AOB=30°,求旗桿的高度h;
(2)經(jīng)分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)將基線AB調(diào)整到線段AO上(如圖2),α與β之差盡量大時,可以提高測量精確度,設(shè)調(diào)整后AB的距離為d,tanβ=
4d
,旗桿的實際高度為25,試問d為何值時,β-α最大?

查看答案和解析>>

如圖1,某學(xué)校田徑場上有一旗桿OP,為了測量它的高度,在地面上選一基線AB,設(shè)其長度為d,在A點處測得P點的仰角為α,在B點處測得P點的仰角為β.
(1)若AB=20,α=30°,β=45°,且∠AOB=30°,求旗桿的高度h;
(2)經(jīng)分析若干測得的數(shù)據(jù)后,發(fā)現(xiàn)將基線AB調(diào)整到線段AO上(如圖2),α與β之差盡量大時,可以提高測量精確度,設(shè)調(diào)整后AB的距離為d,tanβ=數(shù)學(xué)公式,旗桿的實際高度為25,試問d為何值時,β-α最大?

查看答案和解析>>

一、選擇題:本小題共10小題,每小題5分,共50分.

題號

1

2

3

4

5

6

7

8

9

10

答案

B

D

B

C

A

C

B

B

A

A

二、填空題:本小題11―13題必答, 14、15小題中選答1題,若全答只計14題得分,共20分.

11.  35             12.            13. 

14.                15.    

三、解答題:共80分.

16題(本題滿分13分)

解:(1)要使f(x)有意義,必須,即

得f(x)的定義域為………………………………7分

  (2)因f(x)的定義域為,關(guān)于原點不對稱,所以

f(x)為非奇非偶函數(shù). ……………………………………………13分

17題(本題滿分13分)

解:(1)當(dāng)且僅當(dāng)時,方程組有唯一解.因的可能情況為三種情況………………………………3分

        而先后兩次投擲骰子的總事件數(shù)是36種,所以方程組有唯一解的概率

        ……………………………………………………………………6分

(2)因為方程組只有正數(shù)解,所以兩直線的交點在第一象限,由它們的圖像可知

          ………………………………………………………………9分

解得(a,b)可以是(1,4),(1,5),(1,6),(2,1),(2,2),(3,1),(3,2),(4,1),(4,2),(5,1),(5,2),(6,1),(6,2),所以方程組只有正數(shù)解的概率………………………………………………………………………13分

 

18題(本題滿分14分)

(1)    證明:由題設(shè)知,F(xiàn)G=GA,F(xiàn)H=HD

             所以GH.

             又BC,故GHBC

             所以四邊形BCHG是平等四邊形。……………………4分

(2)    C、D、F、E四點共面。理由如下:

由BE,G是FA的中點知,

BEGF,所以EF//BG。……………………6分

由(1)知BG//CH,故EF//CH,故F、E、C、H共面,又點D在直線FH上,

所以C、D、F、E四點共面!8分

(3)    證明:連結(jié)EG,由AB=BE,BEAG,及,知ABEG是正方形,

             故BG⊥EA。由題設(shè)知,F(xiàn)A、AD、AB兩兩垂直,故AD⊥平面FABE,因此AD⊥BG,又EA∩AD=A,所以BG⊥平面ADE。

             由(1)知,CH//BG,所以CH⊥平面ADE,由(2)知H平面CDE,故CH平面CDE,得平面ADE⊥平面CDE!14分

 

19題(本題滿分14分)

解:(1)由已知得,解得:……………………4分

所求橢圓方程為………………………………………………6分

(2)因點即A(3,0),設(shè)直線PQ方程為………………8分

則由方程組,消去y得:

設(shè)點……………………11分

,得,

,代入上式得

,故

解得:,所求直線PQ方程為……………………14分

20題(本題滿分14分)

解:(1)函數(shù)f(x)的定義域為,…………2分

①當(dāng)時,>0,f(x)在上遞增.………………………………4分

②當(dāng)時,令解得:

,因(舍去),故在<0,f(x)遞減;在上,>0,f(x)遞增.……………8分

(2)由(1)知內(nèi)遞減,在內(nèi)遞增.

……………………………………11分

,又因

,得………………14分

21題(本題滿分12分)

解:(1)由,可得

………………………………3分

所以是首項為0,公差為1的等差數(shù)列.

所以……………………6分

(2)解:設(shè)……①

……②

當(dāng)時,①②得

…………9分

這時數(shù)列的前n項和

當(dāng)時,,這時數(shù)列的前n項和

…………………………………………12分

 

 

 

 


同步練習(xí)冊答案