求平面法向量得方法五.布置作業(yè):教材P97---1,2,P99---14[補充習(xí)題] 查看更多

 

題目列表(包括答案和解析)

n
=(1,-2,2)是平面α的一個法向量,則下列向量能作為平面α法向量的是( 。

查看答案和解析>>

=(1,-2,2)是平面α的一個法向量,則下列向量能作為平面α法向量的是( )
A.(1,-2,0)
B.(0,-2,2)
C.(2,-4,4)
D.(2,4,4)

查看答案和解析>>

(2010•臺州一模)我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動點軌跡方程的方法,可以求出過點A(-3,4),且法向量為
n
=(1,-2)
的直線(點法式)方程為1×(x+3)+(-2)×(y-4)=0,化簡得x-2y+11=0. 類比以上方法,在空間直角坐標(biāo)系中,經(jīng)過點A(3,4,5),且法向量為
n
=(2,1,3)
的平面(點法式)方程為
2x+y+3z-21=0
2x+y+3z-21=0
(請寫出化簡后的結(jié)果).

查看答案和解析>>

我們把在平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系xOy中,利用求動點軌跡方程的方法,可以求出過點A(-3,4),且其法向量為
n
=(1,-2)
的直線方程為1x(x+3)+(-2)×(y-4)=0,化簡得x-2y+11=0.類比上述方法,在空間坐標(biāo)系O-xyz中,經(jīng)過點A(1,2,3),且其法向量為
n
=(-1,-2,1)
的平面方程為
 

查看答案和解析>>

(2012•浙江模擬)平面內(nèi)與直線平行的非零向量稱為直線的方向向量;與直線的方向向量垂直的非零向量稱為直線的法向量.在平面直角坐標(biāo)系中,利用求動點的軌跡方程的方法,可以求出過點A(2,1)且法向量為
n
=(-1,2)的直線
(點法式)方程為-(x-2)+2(y-1)=0,化簡后得x-2y=0.類比以上求法,在空間直角坐標(biāo)系中,經(jīng)過點A(2,1,3),且法向量為
n
=(-1,2,1)
的平面(點法式)方程為
x-2y-z+3=0
x-2y-z+3=0
(請寫出化簡后的結(jié)果).

查看答案和解析>>


同步練習(xí)冊答案