(理)數(shù)列{a
n},若對任意的k∈N
*,滿足
=q1,=q2是常數(shù)且不相等),則稱數(shù)列{a
n}為“跳躍等比數(shù)列”,則下列關(guān)于“跳躍等比數(shù)列”的命題:
(1)若數(shù)列{a
n}為“跳躍等比數(shù)列”,則滿足b
k=a
2k•a
2k-1(k∈N
*)的數(shù)列{b
n}是等比數(shù)列;
(2)若數(shù)列{a
n}為“跳躍等比數(shù)列”,則滿足
bk=(k∈N*)的數(shù)列{b
n}是等比數(shù)列;
(3)若數(shù)列{a
n}為等比數(shù)列,則數(shù)列{(-1)
na
n}是“跳躍等比數(shù)列”;
(4)若數(shù)列{a
n}為等比數(shù)列,則滿足
bn=(k∈N*)的數(shù)列{b
n}是“跳躍等比數(shù)列”;
(5)若數(shù)列{a
n}和{b
n}都是“跳躍等比數(shù)列”,則數(shù)列{a
n•b
n}也是“跳躍等比數(shù)列”;其中正確的命題個數(shù)為( )