解:(1)S1=a1=a12=1 ∵a1>0∴a1=1 查看更多

 

題目列表(包括答案和解析)

在等差數(shù)列{an}中,設(shè)S1=a1+a2+…+an,S2=an+1+an+2+…+a2n,S3=a2n+1+a2n+2+…+a3n,則S1,S2,S3關(guān)系為( 。

查看答案和解析>>

用數(shù)學(xué)歸納法證明1+a+a2+…+an+1= (nN*,a≠1)時,在驗證n=1成立時,左邊應(yīng)為某學(xué)生在證明等差數(shù)列前n項和公式時,證法如下:

(1)當n=1時,S1=a1顯然成立;

(2)假設(shè)當n=k時,公式成立,即Sk=ka1+,

n=k+1時,Sk+1 =a1+a2+…+ak+ak+1 =a1+(a1+d)+(a1+2d)+…+[a1+(k-1)d]+(a1+kd)=(k+1)a1+(d+2d+…+kd)

=(k+1)a1+ d=(k+1)a1+ d,

n=k+1時公式成立.

由(1)(2)知,對nN*時,公式都成立.

以上證明錯誤的是(  )

A.當n取第一個值1時,證明不對

B.歸納假設(shè)的寫法不對

C.從n=kn=k+1時的推理中未用歸納假設(shè)

D.從n=kn=k+1時的推理有錯誤

查看答案和解析>>

某學(xué)生在證明等差數(shù)列前n項和公式時,證法如下:

(1)當n=1時,S1=a1顯然成立.

(2)假設(shè)n=k時,公式成立,即

Sk=ka1+,

當n=k+1時,

Sk+1=a1+a2+…+ak+ak+1

=a1+(a1+d)+(a1+2d)+…+a1+(k-1)d+a1+kd

=(k+1)a1+(d+2d+…+kd)

=(k+1)a1+d

=(k+1)a1+d.

∴n=k+1時公式成立.

∴由(1)(2)可知對n∈N+,公式成立.

以上證明錯誤的是(    )

A.當n取第一個值1時,證明不對

B.歸納假設(shè)寫法不對

C.從n=k到n=k+1的推理中未用歸納假設(shè)

D.從n=k到n=k+1的推理有錯誤

查看答案和解析>>

已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.

(1)求函數(shù)f(x)的表達式;

(2)若數(shù)列{an}滿足a1,an+1=f(an),bn-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式;

(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).

【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.

由f(x)=2x只有一解,即=2x,

也就是2ax2-2(1+b)x=0(a≠0)只有一解,

∴b=-1.∴a=-1.故f(x)=.…………………………………………4分

(2)an+1=f(an)=(n∈N*),bn-1, ∴,

∴{bn}為等比數(shù)列,q=.又∵a1,∴b1-1=

bn=b1qn-1n-1n(n∈N*).……………………………9分

(3)證明:∵anbn=an=1-an=1-,

∴a1b1+a2b2+…+anbn+…+<+…+

=1-<1(n∈N*).

 

查看答案和解析>>

在等差數(shù)列{an}中,設(shè)S1=a1+a2+…+an,S2=an+1+an+2+…+a2n,S3=a2n+1+a2n+2+…+a3n,則S1,S2,S3,關(guān)系為( )
A.等差數(shù)列
B.等比數(shù)列
C.等差數(shù)列或等比數(shù)列
D.都不對

查看答案和解析>>


同步練習冊答案