解一:此時頂點C的坐標為C(1.).如圖5.作CD⊥AB于D.連結(jié)CQ. 則AD=1. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,已知點B(1,3),C(1,0),直線y=x+k經(jīng)過點B,且與x軸交于點A,將△ABC沿直線AB折疊得到△ABD.
(1)填空:A點坐標為(
 
 
),D點坐標為(
 
,
 
);
(2)若拋物線y=
1
3
x2+bx+c經(jīng)過C,D兩點,求拋物線的解析式;
(3)將(2)中的拋物線沿y軸向上平移,設平移后所得拋物線與y軸交點為E,點M是平移后的拋物線與直線AB的公共點,在拋物線平移過程中是否存在某一位置使得直線EM∥x軸.若存在,此時拋物線向上平移了幾個單位?若不存在,請說明理由.
(提示:拋物線y=ax2+bx+c(a≠0)的對稱軸是x=-
b
2a
,頂點坐標是(-
b
2a
4ac-b2
4a

查看答案和解析>>

精英家教網(wǎng)如圖,在平面直角坐標系中,頂點為(4,-1)的拋物線交y軸于A點,交x軸于B,C兩點(點B在點C的左側(cè)),已知A點坐標為(0,3).
(1)求此拋物線的解析式
(2)過點B作線段AB的垂線交拋物線于點D,如果以點C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸l與⊙C有怎樣的位置關系,并給出證明;
(3)已知點P是拋物線上的一個動點,且位于A,C兩點之間,問:當點P運動到什么位置時,△PAC的面積最大?并求出此時P點的坐標和△PAC的最大面積.

查看答案和解析>>

如圖,在平面直角坐標系xOy中,△ABC三個頂點的坐標分別為A(-6,0),B(6,0),C(0,4
3
),延精英家教網(wǎng)長AC到點D,使CD=
1
2
AC,過點D作DE∥AB交BC的延長線于點E.
(1)求D點的坐標;
(2)作C點關于直線DE的對稱點F,分別連接DF、EF,若過B點的直線y=kx+b將四邊形CDFE分成周長相等的兩個四邊形,確定此直線的解析式;
(3)設G為y軸上一點,點P從直線y=kx+b與y軸的交點出發(fā),先沿y軸到達G點,再沿GA到達A點,若P點在y軸上運動的速度是它在直線GA上運動速度的2倍,試確定G點的位置,使P點按照上述要求到達A點所用的時間最短.(要求:簡述確定G點位置的方法,但不要求證明)

查看答案和解析>>

如圖,在矩形OABC中,已知A、C兩點的坐標分別為A(4,0)、C(0,2),D為OA的中點.設點P是∠AOC精英家教網(wǎng)平分線上的一個動點(不與點O重合).
(1)試證明:無論點P運動到何處,PC總與PD相等;
(2)當點P運動到與點B的距離最小時,試確定過O、P、D三點的拋物線的解析式;
(3)設點E是(2)中所確定拋物線的頂點,當點P運動到何處時,△PDE的周長最小?求出此時點P的坐標和△PDE的周長;
(4)設點N是矩形OABC的對稱中心,是否存在點P,使∠CPN=90°?若存在,請直接寫出點P的坐標.

查看答案和解析>>

如圖,拋物線y=ax2+bx+c的頂點為A(4,4),且拋物線經(jīng)過原點,和x軸相交于另一點B,以AB為一邊在直線AB的右側(cè)畫正方形ABCD.
(1)求拋物線的解析式和點C、D的坐標;
(2)能否將此拋物線沿著直線x=4平移,使平移后的拋物線恰好經(jīng)過正方形ABCD的另兩個頂點C、D若能,寫出平移后拋物線的解析式;若不能,請說明理由;
(3)若以點A(4,4)為圓心,r為半徑畫圓,請你探究:
①當r=
 
時,⊙A上有且只有一個點到直線BD的距離等于2;
②當r=
 
時,⊙A上有且只有三個點到直線BD的距離等于2;
③隨著r的變化,⊙A上到直線BD的距離等于2的點的個數(shù)也隨著變化,請根據(jù)⊙精英家教網(wǎng)A上到直線BD的距離等于2的點的個數(shù),討論相應的r的值或取值范圍.

查看答案和解析>>


同步練習冊答案