由題意得.所以.-------6 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分)

    為考察某種甲型H1N1疫苗的效果,進(jìn)行動(dòng)物實(shí)驗(yàn),得到如下疫苗效果的實(shí)驗(yàn)列聯(lián)表:

 

感染

未感染

總計(jì)

沒服用

20

30

50

服用

x

y

50

總計(jì)

M

N

100

    設(shè)從沒服用疫苗的動(dòng)物中任取兩只,感染數(shù)為從服從過疫苗的動(dòng)物中任取兩只,感染數(shù)為工作人員曾計(jì)算過

   (1)求出列聯(lián)表中數(shù)據(jù)的值;

   (2)寫出的均值(不要求計(jì)算過程),并比較大小,請(qǐng)解釋所得出的結(jié)論的實(shí)際意義;

   (3)能夠以97.5%的把握認(rèn)為這種甲型H1N1疫苗有效么?并說明理由。

        參考公式:

        參考數(shù)據(jù):

0.05

0.025

0.010

3.841

5.024

6.635

 

 

查看答案和解析>>

山東省《體育高考方案》于2012年2月份公布,方案要求以學(xué)校為單位進(jìn)行體育測(cè)試,某校對(duì)高三1班同學(xué)按照高考測(cè)試項(xiàng)目按百分制進(jìn)行了預(yù)備測(cè)試,并對(duì)50分以上的成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,若90~100分?jǐn)?shù)段的人數(shù)為2人.

(Ⅰ)請(qǐng)估計(jì)一下這組數(shù)據(jù)的平均數(shù)M;

(Ⅱ)現(xiàn)根據(jù)初賽成績(jī)從第一組和第五組(從低分段到高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成一個(gè)小組.若選出的兩人成績(jī)差大于20,則稱這兩人為“幫扶組”,試求選出的兩人為“幫扶組”的概率.

【解析】本試題主要考查了概率的運(yùn)算和統(tǒng)計(jì)圖的運(yùn)用。

(1)由由頻率分布直方圖可知:50~60分的頻率為0.1, 60~70分的頻率為0.25, 70~80分的頻率為0.45, 80~90分的頻率為0.15, 90~100分的頻率為0.05,然后利用平均值公式,可知這組數(shù)據(jù)的平均數(shù)M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)

(2)中利用90~100分?jǐn)?shù)段的人數(shù)為2人,頻率為0.05;得到總參賽人數(shù)為40,然后得到0~60分?jǐn)?shù)段的人數(shù)為40×0.1=4人,第五組中有2人,這樣可以得到基本事件空間為15種,然后利用其中兩人成績(jī)差大于20的選法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8種,得到概率值

解:(Ⅰ)由頻率分布直方圖可知:50~60分的頻率為0.1, 60~70分的頻率為0.25, 70~80分的頻率為0.45, 80~90分的頻率為0.15, 90~100分的頻率為0.05; ……………2分

∴這組數(shù)據(jù)的平均數(shù)M=55×0.1+65×0.25+75×0.45+85×0.15+95×0.05=73(分)…4分

(Ⅱ)∵90~100分?jǐn)?shù)段的人數(shù)為2人,頻率為0.05;

∴參加測(cè)試的總?cè)藬?shù)為=40人,……………………………………5分

∴50~60分?jǐn)?shù)段的人數(shù)為40×0.1=4人, …………………………6分

設(shè)第一組50~60分?jǐn)?shù)段的同學(xué)為A1,A2,A3,A4;第五組90~100分?jǐn)?shù)段的同學(xué)為B1,B2

則從中選出兩人的選法有:(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15種;其中兩人成績(jī)差大于20的選法有:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2)共8種 …………………………11分

則選出的兩人為“幫扶組”的概率為

 

查看答案和解析>>

中,是三角形的三內(nèi)角,是三內(nèi)角對(duì)應(yīng)的三邊,已知成等差數(shù)列,成等比數(shù)列

(Ⅰ)求角的大;

(Ⅱ)若,求的值.

【解析】第一問中利用依題意,故

第二問中,由題意又由余弦定理知

,得到,所以,從而得到結(jié)論。

(1)依題意,故……………………6分

(2)由題意又由余弦定理知

…………………………9分

   故

           代入

 

查看答案和解析>>

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為,

由題意可知,即,解得d,得到通項(xiàng)公式,第二問中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價(jià)于

當(dāng)時(shí),;當(dāng)時(shí),

,所以猜想,的最小值為.     …………8分

下證不等式對(duì)任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時(shí),,成立.

假設(shè)當(dāng)時(shí),不等式成立,

當(dāng)時(shí),, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分

方法二:?jiǎn)握{(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項(xiàng)公式,        …………10分

,    …………12分

所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

已知冪函數(shù)滿足。

(1)求實(shí)數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;

(2)對(duì)于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請(qǐng)說明理由。

【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運(yùn)用。第一問中利用,冪函數(shù)滿足,得到

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,故解析式為

(2)由(1)知,,,因此拋物線開口向下,對(duì)稱軸方程為:,結(jié)合二次函數(shù)的對(duì)稱軸,和開口求解最大值為5.,得到

(1)對(duì)于冪函數(shù)滿足,

因此,解得,………………3分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,當(dāng)k=0時(shí),

當(dāng)k=1時(shí),,綜上所述,k的值為0或1,。………………6分

(2)函數(shù),………………7分

由此要求,因此拋物線開口向下,對(duì)稱軸方程為:,

當(dāng)時(shí),,因?yàn)樵趨^(qū)間上的最大值為5,

所以,或…………………………………………10分

解得滿足題意

 

查看答案和解析>>


同步練習(xí)冊(cè)答案