(Ⅱ)依題意有 查看更多

 

題目列表(包括答案和解析)

(1)若對(duì)于任意的n∈N*,總有
n+2
n(n+1)
=
A
n
+
B
n+1
成立,求常數(shù)A,B的值;
(2)在數(shù)列{an}中,a1=
1
2
,an=2an-1+
n+2
n(n+1)
(n≥2,n∈N*),求通項(xiàng)an
(3)在(2)題的條件下,設(shè)bn=
n+1
2(n+1)an+2
,從數(shù)列{bn}中依次取出第k1項(xiàng),第k2項(xiàng),…第kn項(xiàng),按原來(lái)的順序組成新的數(shù)列{cn},其中cn=bkn,其中k1=m,kn+1-kn=r∈N*.試問(wèn)是否存在正整數(shù)m,r使
lim
n→+∞
(c1+c2+…+cn)=S
4
61
<S<
1
13
成立?若存在,求正整數(shù)m,r的值;不存在,說(shuō)明理由.

查看答案和解析>>

(2007•上海)我們?cè)谙旅娴谋砀駜?nèi)填寫(xiě)數(shù)值:先將第1行的所有空格填上1;再把一個(gè)首項(xiàng)為1,公比為q的數(shù)列{an}依次填入第一列的空格內(nèi);然后按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫(xiě)其它空格.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)設(shè)第2行的數(shù)依次為B1,B2,…,Bn,試用n,q表示B1+B2+…+Bn的值;
(2)設(shè)第3列的數(shù)依次為c1,c2,c3,…,cn,求證:對(duì)于任意非零實(shí)數(shù)q,c1+c3>2c2
(3)請(qǐng)?jiān)谝韵聝蓚(gè)問(wèn)題中選擇一個(gè)進(jìn)行研究 (只能選擇一個(gè)問(wèn)題,如果都選,被認(rèn)為選擇了第一問(wèn)).
①能否找到q的值,使得(2)中的數(shù)列c1,c2,c3,…,cn的前m項(xiàng)c1,c2,…,cm (m≥3)成為等比數(shù)列?若能找到,m的值有多少個(gè)?若不能找到,說(shuō)明理由.
②能否找到q的值,使得填完表格后,除第1列外,還有不同的兩列數(shù)的前三項(xiàng)各自依次成等比數(shù)列?并說(shuō)明理由.

查看答案和解析>>

(2013•閘北區(qū)一模)假設(shè)你已經(jīng)學(xué)習(xí)過(guò)指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒(méi)有學(xué)習(xí)過(guò)對(duì)數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實(shí)數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請(qǐng)你依據(jù)上述假設(shè)和已知,在不涉及對(duì)數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對(duì)于任意的正實(shí)數(shù)x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2);
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

(本題滿分12分)有混在一起質(zhì)地均勻且粗細(xì)相同的長(zhǎng)分別為1、2、3的鋼管各3根(每根鋼管附有不同的編號(hào)),現(xiàn)隨意抽取4根(假設(shè)各鋼管被抽取的可能性是均等的),再將抽取的4根首尾相接焊成筆直的一根.

(1)若用ξ表示新焊成的鋼管的長(zhǎng)度(焊接誤差不計(jì)),試求隨機(jī)變量的分布列及;

(2)設(shè)的取值從小到大依次為數(shù)列是首項(xiàng)為1,公差為的等差數(shù)列,設(shè),當(dāng)時(shí),求的值。

查看答案和解析>>

(1)若對(duì)于任意的n∈N*,總有數(shù)學(xué)公式成立,求常數(shù)A,B的值;
(2)在數(shù)列{an}中,數(shù)學(xué)公式,數(shù)學(xué)公式(n≥2,n∈N*),求通項(xiàng)an;
(3)在(2)題的條件下,設(shè)數(shù)學(xué)公式,從數(shù)列{bn}中依次取出第k1項(xiàng),第k2項(xiàng),…第kn項(xiàng),按原來(lái)的順序組成新的數(shù)列{cn},其中數(shù)學(xué)公式,其中k1=m,kn+1-kn=r∈N*.試問(wèn)是否存在正整數(shù)m,r使數(shù)學(xué)公式數(shù)學(xué)公式成立?若存在,求正整數(shù)m,r的值;不存在,說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案