(1)試求無窮等比子數(shù)列()各項(xiàng)的和, 查看更多

 

題目列表(包括答案和解析)

定義:將一個(gè)數(shù)列中部分項(xiàng)按原來的先后次序排列所成的一個(gè)新數(shù)列稱為原數(shù)列的一個(gè)子數(shù)列.
已知無窮等比數(shù)列{an}的首項(xiàng)、公比均為數(shù)學(xué)公式
(1)試求無窮等比子數(shù)列{a3k-1}(k∈N*)各項(xiàng)的和;
(2)是否存在數(shù)列{an}的一個(gè)無窮等比子數(shù)列,使得它各項(xiàng)的和為數(shù)學(xué)公式?若存在,求出滿足條件的子數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說明理由;
(3)試設(shè)計(jì)一個(gè)數(shù)學(xué)問題,研究:是否存在數(shù)列{an}的兩個(gè)不同的無窮等比子數(shù)列,使得其各項(xiàng)和之間滿足某種關(guān)系.請(qǐng)寫出你的問題以及問題的研究過程和研究結(jié)論.

查看答案和解析>>

定義:將一個(gè)數(shù)列中部分項(xiàng)按原來的先后次序排列所成的一個(gè)新數(shù)列稱為原數(shù)列的一個(gè)子數(shù)列.
已知無窮等比數(shù)列{an}的首項(xiàng)、公比均為
(1)試求無窮等比子數(shù)列{a3k-1}(k∈N*)各項(xiàng)的和;
(2)是否存在數(shù)列{an}的一個(gè)無窮等比子數(shù)列,使得它各項(xiàng)的和為?若存在,求出滿足條件的子數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說明理由;
(3)試設(shè)計(jì)一個(gè)數(shù)學(xué)問題,研究:是否存在數(shù)列{an}的兩個(gè)不同的無窮等比子數(shù)列,使得其各項(xiàng)和之間滿足某種關(guān)系.請(qǐng)寫出你的問題以及問題的研究過程和研究結(jié)論.

查看答案和解析>>

定義:將一個(gè)數(shù)列中部分項(xiàng)按原來的先后次序排列所成的一個(gè)新數(shù)列稱為原數(shù)列的一個(gè)子數(shù)列.
已知無窮等比數(shù)列{an}的首項(xiàng)、公比均為
(1)試求無窮等比子數(shù)列{a3k-1}(k∈N*)各項(xiàng)的和;
(2)是否存在數(shù)列{an}的一個(gè)無窮等比子數(shù)列,使得它各項(xiàng)的和為?若存在,求出滿足條件的子數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說明理由;
(3)試設(shè)計(jì)一個(gè)數(shù)學(xué)問題,研究:是否存在數(shù)列{an}的兩個(gè)不同的無窮等比子數(shù)列,使得其各項(xiàng)和之間滿足某種關(guān)系.請(qǐng)寫出你的問題以及問題的研究過程和研究結(jié)論.

查看答案和解析>>

定義:將一個(gè)數(shù)列中部分項(xiàng)按原來的先后次序排列所成的一個(gè)新數(shù)列稱為原數(shù)列的一個(gè)子數(shù)列.
已知無窮等比數(shù)列{an}的首項(xiàng)、公比均為
1
2

(1)試求無窮等比子數(shù)列{a3k-1}(k∈N*)各項(xiàng)的和;
(2)是否存在數(shù)列{an}的一個(gè)無窮等比子數(shù)列,使得它各項(xiàng)的和為
1
7
?若存在,求出滿足條件的子數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說明理由;
(3)試設(shè)計(jì)一個(gè)數(shù)學(xué)問題,研究:是否存在數(shù)列{an}的兩個(gè)不同的無窮等比子數(shù)列,使得其各項(xiàng)和之間滿足某種關(guān)系.請(qǐng)寫出你的問題以及問題的研究過程和研究結(jié)論.

查看答案和解析>>

(09年雅禮中學(xué)月考理)(13分)

定義:將一個(gè)數(shù)列中部分項(xiàng)按原來的先后次序排列所成的一個(gè)新數(shù)列稱為原數(shù)列的一個(gè)子數(shù)列.已知無窮等比數(shù)列的首項(xiàng)和公比均為

   (1)試求無窮等比子數(shù)列)各項(xiàng)的和;

   (2)已知數(shù)列的一個(gè)無窮等比子數(shù)列各項(xiàng)的和為,求這個(gè)子數(shù)列的通項(xiàng)公式;

   (3)證明:在數(shù)列的所有子數(shù)列中,不存在兩個(gè)不同的無窮等比子數(shù)列,使得它們各項(xiàng)的和相等.

查看答案和解析>>

一、填空題:(5’×11=55’)

題號(hào)

1

2

3

4

5

6

答案

0

(1,2)

2

題號(hào)

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號(hào)

12

13

14

<center id="wugox"><progress id="wugox"></progress></center><center id="wugox"></center>
      1. 20090116

        答案

        A

        C

        B

        B

        三、解答題:(12’+14’+15’+16’+22’=79’)

        16.(理)解:設(shè)為橢圓上的動(dòng)點(diǎn),由于橢圓方程為,故

        因?yàn)?sub>,所以

            推出

        依題意可知,當(dāng)時(shí),取得最小值.而,

        故有,解得

        又點(diǎn)在橢圓的長(zhǎng)軸上,即.故實(shí)數(shù)的取值范圍是

        17.解:(1)當(dāng)時(shí),;

        當(dāng)時(shí),;

        當(dāng)時(shí),;(不單獨(dú)分析時(shí)的情況不扣分)

        當(dāng)時(shí),

        (2)由(1)知:當(dāng)時(shí),集合中的元素的個(gè)數(shù)無限;

        當(dāng)時(shí),集合中的元素的個(gè)數(shù)有限,此時(shí)集合為有限集.

        因?yàn)?sub>,當(dāng)且僅當(dāng)時(shí)取等號(hào),

        所以當(dāng)時(shí),集合的元素個(gè)數(shù)最少.

        此時(shí),故集合

        18.(本題滿分15分,1小題7分,第2小題8

        解:(1)如圖,建立空間直角坐標(biāo)系.不妨設(shè)

        依題意,可得點(diǎn)的坐標(biāo),

            于是,,

           由,則異面直線所成角的

        大小為

        (2)解:連結(jié). 由,

        的中點(diǎn),得;

        ,,得

        ,因此

        由直三棱柱的體積為.可得

        所以,四棱錐的體積為

        19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

        由此可得,;

        由規(guī)律②可知,,

        又當(dāng)時(shí),

        所以,,由條件是正整數(shù),故取

            綜上可得,符合條件.

        (2) 解法一:由條件,,可得

        ,

        ,

        因?yàn)?sub>,,所以當(dāng)時(shí),

        ,即一年中的7,8,9,10四個(gè)月是該地區(qū)的旅游“旺季”.

        解法二:列表,用計(jì)算器可算得

        月份

        6

        7

        8

        9

        10

        11

        人數(shù)

        383

        463

        499

        482

        416

        319

        故一年中的7,8,9,10四個(gè)月是該地區(qū)的旅游“旺季”.

        20.解:(1)依條件得: 則無窮等比數(shù)列各項(xiàng)的和為:

             ;

          (2)解法一:設(shè)此子數(shù)列的首項(xiàng)為,公比為,由條件得:,

        ,即    

         則 .

        所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項(xiàng)、公比均為,

        其通項(xiàng)公式為,.

        解法二:由條件,可設(shè)此子數(shù)列的首項(xiàng)為,公比為

        ………… ①

        又若,則對(duì)每一

        都有………… ②

        從①、②得;

        因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項(xiàng)、公比均為無窮等比子

        數(shù)列,通項(xiàng)公式為,

        (3)以下給出若干解答供參考,評(píng)分方法參考本小題閱卷說明:

        問題一:是否存在數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得它們各項(xiàng)的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

        解:假設(shè)存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使它們的各項(xiàng)和之積為1。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

        因?yàn)榈仁阶筮吇驗(yàn)榕紨?shù),或?yàn)橐粋(gè)分?jǐn)?shù),而等式右邊為兩個(gè)奇數(shù)的乘積,還是一個(gè)奇數(shù)。故等式不可能成立。所以這樣的兩個(gè)子數(shù)列不存在。

        【以上解答屬于層級(jí)3,可得設(shè)計(jì)分4分,解答分6分】

        問題二:是否存在數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得它們各項(xiàng)的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

        解:假設(shè)存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使它們的各項(xiàng)和相等。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

        ………… ①

        ,則①,矛盾;若,則①

        ,矛盾;故必有,不妨設(shè),則

        ………… ②

        1當(dāng)時(shí),②,等式左邊是偶數(shù),

        右邊是奇數(shù),矛盾;

        2當(dāng)時(shí),②

        兩個(gè)等式的左、右端的奇偶性均矛盾;

        綜合可得,不存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得它們的各項(xiàng)和相等。

        【以上解答屬于層級(jí)4,可得設(shè)計(jì)分5分,解答分7分】

        問題三:是否存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

        解:假設(shè)存在滿足條件的原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

        顯然當(dāng)時(shí),上述等式成立。例如取,,得:

        第一個(gè)子數(shù)列:,各項(xiàng)和;第二個(gè)子數(shù)列:,

        各項(xiàng)和,有,因而存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍。

        【以上解答屬層級(jí)3,可得設(shè)計(jì)分4分,解答分6分.若進(jìn)一步分析完備性,可提高一個(gè)層級(jí)評(píng)分】

        問題四:是否存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):存在。

        問題五:是否存在原數(shù)列的兩個(gè)不同的無窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?并說明理由.解(略):不存在.

        【以上問題四、問題五等都屬于層級(jí)4的問題設(shè)計(jì),可得設(shè)計(jì)分5分。解答分最高7分】

         


        同步練習(xí)冊(cè)答案