3.下列物理量中.表示物質(zhì)特性的是A.速度 B.密度 C.質(zhì)量 D.力 查看更多

 

題目列表(包括答案和解析)

(2000?上海)在下列物理量中,表示物質(zhì)特性的是( 。

查看答案和解析>>

(2008?呼和浩特)(多選)如圖所示是反應(yīng)物理規(guī)律的幾個現(xiàn)象,下列說法中正確的是( 。

查看答案和解析>>

讀下面材料,回答有關(guān)問題:
地球表面附近的物體,在僅受重力作用時具有的加速度叫做重力加速度,也叫自由落體加速度,用g表示.在自由落體運動時,g=a,重力加速度g值的準確測定對于計量學、精密物理計量、地球物理學、地震預(yù)報、重力探礦和空間科學等都具有重要意義.
最早測定重力加速度的是伽利略.約在1590年,他利用傾角為θ的斜面將g的測定改為測定微小加速度a=gsinθ,如圖1.1784年,G?阿特武德將質(zhì)量同為M的重物用繩連接后,掛在光滑的輕質(zhì)滑輪上,再在另一個重物上附加一重量小得多的重物m,如圖,使其產(chǎn)生一微小加速度a=mg/(2M+m),測得a后,即可算出g.
1888年,法國軍事測繪局使用新的方法進行了g值的計量.它的原理簡述為:若一個物體如單擺那樣以相同的周期繞兩個中心擺動,則兩個中心之間的距離等于與上述周期相同的單擺的長度.當時的計量結(jié)果為:g=9.80991m/s2
1906年,德國的庫能和福脫萬勒用相同的方法在波茨坦作了g值的計量,作為國際重力網(wǎng)的參考點,即稱為“波茨坦重力系統(tǒng)”的起點,其結(jié)果為g(波茨坦)=9.81274m/s2
根據(jù)波茨坦得到的g值可以通過相對重力儀來求得其他地點與它的差值,從而得出地球上各地的g值,這樣建立起來的一系列g(shù)值就稱為波茨坦重力系統(tǒng).國際計量局在1968年10月的會議上推薦,自1969年1月1日起,g(波茨坦)減小到9.81260m/s2.(粗略計算時g=10N/m2
(1)月球表面上的重力加速度為地球表面上的重力加速度的1/6,同一個飛行器在月球表面上時與在地球表面上時相比較[]
A.慣性減小為
1
6
,重力不變.
B.慣性和重力都減小為
1
6

C.慣性不變,重力減小為
1
6

D.慣性和重力都不變.
(2)如圖所示,在兩根輕質(zhì)彈簧a、b之間系住一小球,彈簧的另外兩端分別固定在地面和天花板上同一豎直線上的兩點,等小球靜止后,突然撤去彈簧a,則在撤去彈簧后的瞬間,小球加速度的大小為2.5米/秒2,若突然撤去彈簧b,則在撤去彈簧后的瞬間,小球加速度的大小可能( 。
A.7.5米/秒2,方向豎直向下
B.7.5米/秒2,方向豎直向上
C.12.5米/秒2,方向豎直向下
D.12.5米/秒2,方向豎直向上.

查看答案和解析>>

讀下面材料,回答有關(guān)問題:
地球表面附近的物體,在僅受重力作用時具有的加速度叫做重力加速度,也叫自由落體加速度,用g表示.在自由落體運動時,g=a,重力加速度g值的準確測定對于計量學、精密物理計量、地球物理學、地震預(yù)報、重力探礦和空間科學等都具有重要意義.
最早測定重力加速度的是伽利略.約在1590年,他利用傾角為θ的斜面將g的測定改為測定微小加速度a=gsinθ,如圖1.1784年,G?阿特武德將質(zhì)量同為M的重物用繩連接后,掛在光滑的輕質(zhì)滑輪上,再在另一個重物上附加一重量小得多的重物m,如圖,使其產(chǎn)生一微小加速度a=mg/(2M+m),測得a后,即可算出g.
1888年,法國軍事測繪局使用新的方法進行了g值的計量.它的原理簡述為:若一個物體如單擺那樣以相同的周期繞兩個中心擺動,則兩個中心之間的距離等于與上述周期相同的單擺的長度.當時的計量結(jié)果為:g=9.80991m/s2
1906年,德國的庫能和福脫萬勒用相同的方法在波茨坦作了g值的計量,作為國際重力網(wǎng)的參考點,即稱為“波茨坦重力系統(tǒng)”的起點,其結(jié)果為g(波茨坦)=9.81274m/s2
根據(jù)波茨坦得到的g值可以通過相對重力儀來求得其他地點與它的差值,從而得出地球上各地的g值,這樣建立起來的一系列g(shù)值就稱為波茨坦重力系統(tǒng).國際計量局在1968年10月的會議上推薦,自1969年1月1日起,g(波茨坦)減小到9.81260m/s2.(粗略計算時g=10N/m2
(1)月球表面上的重力加速度為地球表面上的重力加速度的1/6,同一個飛行器在月球表面上時與在地球表面上時相比較[]
A.慣性減小為數(shù)學公式,重力不變.
B.慣性和重力都減小為數(shù)學公式
C.慣性不變,重力減小為數(shù)學公式
D.慣性和重力都不變.
(2)如圖所示,在兩根輕質(zhì)彈簧a、b之間系住一小球,彈簧的另外兩端分別固定在地面和天花板上同一豎直線上的兩點,等小球靜止后,突然撤去彈簧a,則在撤去彈簧后的瞬間,小球加速度的大小為2.5米/秒2,若突然撤去彈簧b,則在撤去彈簧后的瞬間,小球加速度的大小可能
A.7.5米/秒2,方向豎直向下
B.7.5米/秒2,方向豎直向上
C.12.5米/秒2,方向豎直向下
D.12.5米/秒2,方向豎直向上.

查看答案和解析>>

讀下面材料,回答有關(guān)問題:
地球表面附近的物體,在僅受重力作用時具有的加速度叫做重力加速度,也叫自由落體加速度,用g表示.在自由落體運動時,g=a,重力加速度g值的準確測定對于計量學、精密物理計量、地球物理學、地震預(yù)報、重力探礦和空間科學等都具有重要意義.
最早測定重力加速度的是伽利略.約在1590年,他利用傾角為θ的斜面將g的測定改為測定微小加速度a=gsinθ,如圖1.1784年,G?阿特武德將質(zhì)量同為M的重物用繩連接后,掛在光滑的輕質(zhì)滑輪上,再在另一個重物上附加一重量小得多的重物m,如圖,使其產(chǎn)生一微小加速度a=mg/(2M+m),測得a后,即可算出g.
1888年,法國軍事測繪局使用新的方法進行了g值的計量.它的原理簡述為:若一個物體如單擺那樣以相同的周期繞兩個中心擺動,則兩個中心之間的距離等于與上述周期相同的單擺的長度.當時的計量結(jié)果為:g=9.80991m/s2
1906年,德國的庫能和福脫萬勒用相同的方法在波茨坦作了g值的計量,作為國際重力網(wǎng)的參考點,即稱為“波茨坦重力系統(tǒng)”的起點,其結(jié)果為g(波茨坦)=9.81274m/s2
根據(jù)波茨坦得到的g值可以通過相對重力儀來求得其他地點與它的差值,從而得出地球上各地的g值,這樣建立起來的一系列g(shù)值就稱為波茨坦重力系統(tǒng).國際計量局在1968年10月的會議上推薦,自1969年1月1日起,g(波茨坦)減小到9.81260m/s2.(粗略計算時g=10N/m2
(1)月球表面上的重力加速度為地球表面上的重力加速度的1/6,同一個飛行器在月球表面上時與在地球表面上時相比較[]
A.慣性減小為,重力不變.
B.慣性和重力都減小為
C.慣性不變,重力減小為
D.慣性和重力都不變.
(2)如圖所示,在兩根輕質(zhì)彈簧a、b之間系住一小球,彈簧的另外兩端分別固定在地面和天花板上同一豎直線上的兩點,等小球靜止后,突然撤去彈簧a,則在撤去彈簧后的瞬間,小球加速度的大小為2.5米/秒2,若突然撤去彈簧b,則在撤去彈簧后的瞬間,小球加速度的大小可能( )
A.7.5米/秒2,方向豎直向下
B.7.5米/秒2,方向豎直向上
C.12.5米/秒2,方向豎直向下
D.12.5米/秒2,方向豎直向上.

查看答案和解析>>


同步練習冊答案