20 數(shù)列的人一相鄰兩項的坐標(biāo)的點(diǎn)均在一次函數(shù)的圖像上.數(shù)列滿足條件 查看更多

 

題目列表(包括答案和解析)

(2010廣東理數(shù))20.(本小題滿分為14分)

 一條雙曲線的左、右頂點(diǎn)分別為A1,A2,點(diǎn)是雙曲線上不同的兩個動點(diǎn)。

    (1)求直線A1P與A2Q交點(diǎn)的軌跡E的方程式;

(2)若過點(diǎn)H(0, h)(h>1)的兩條直線l1和l2與軌跡E都只有一個交點(diǎn),且 ,求h的值。

查看答案和解析>>

(20) (本小題滿分12分)(注意:在試題卷上作答無效)甲、乙二人進(jìn)行一次圍棋比賽,約定先勝3局者獲得這次比賽的勝利,比賽結(jié)束。假設(shè)在一局中,甲獲勝的概率為0.6,乙獲勝的概率為0.4,各局比賽結(jié)果相互獨(dú)立。已知前2局中,甲、乙各勝1局。(Ⅰ)求再賽2局結(jié)束這次比賽的概率;(Ⅱ)求甲獲得這次比賽勝利的概率。

查看答案和解析>>

(本小題滿10分) 設(shè)直線的方程為

(1) 若在兩坐標(biāo)軸上的截距相等,求的方程;

(2) 若不經(jīng)過第二象限,求實數(shù)的取值范圍.

 

查看答案和解析>>

(本小題滿分為12分)

已知函數(shù),其圖像在點(diǎn)處的切線為

    (1)求、直線及兩坐標(biāo)軸圍成的圖形繞軸旋轉(zhuǎn)一周所得幾何體的體積;

    (2)求、直線軸圍成圖形的面積.

 

查看答案和解析>>

(20) (本小題滿分12分)

設(shè)函數(shù)f(x)=tx2+2t2x+t-1(x∈R,t>0).

(I)求f (x)的最小值h(t);

(II)若h(t)<-2t+m對t∈(0,2)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

2009年曲靖一種高考沖刺卷理科數(shù)學(xué)(一)

一、

1 B 2C 3A 4A 5 A 6 D 7D 8C 9B

10B 11 C 12 A

1依題意得,所以,因此選B

2依題意得。又在第二象限,所以,

,故選C

3

,

因此選A

4 由

因為為純虛數(shù)的充要條件為

故選A

5如圖,

 

故選A

6.設(shè)

故選D

7.設(shè)等差數(shù)列的首項為,公差,因為成等比數(shù)列,所以,即,解得,故選D

8.由,所以之比為2,設(shè),,又點(diǎn)在圓上,所以,即+-4,化簡得=16,故選C

9.長方體的中心即為球心,設(shè)球半徑為,則

于是兩點(diǎn)的球面距離為故選B

10.先分別在同一坐標(biāo)系上畫出函數(shù)的圖象(如圖1)

www.ks5u.com   高考資源網(wǎng)

觀察圖2,顯然,選B

11.依題意,

故選C

12.由題意知,

 

    ①

代入式①得

由方程的兩根為

故選A。

二、

13.5   14.7    15.22    16.①

13.5.線性規(guī)劃問題先作出可行域,注意本題已是最優(yōu)的特定參數(shù)的特點(diǎn),可考慮特殊的交點(diǎn),再驗證,由題設(shè)可知

應(yīng)用運(yùn)動變化的觀點(diǎn)驗證滿足為所求。

14.7. 由題意得

因此A是鈍角,

15.22,連接,的周章為

16.①當(dāng)時,,取到最小值,因次,是對稱軸:②當(dāng)時,因此不是對稱中心;③由,令可得上不是增函數(shù);把函數(shù)的圖象向左平移得到的圖象,得不到的圖象,故真命題序號是①。

 17.(1)上單調(diào)遞增,

上恒成立,即上恒成立,即實數(shù)的取值范圍

(2)由題設(shè)條件知上單調(diào)遞增。

,即

的解集為

的解集為

18.(1)過連接

側(cè)面

。

是邊長為2的等邊三角形。又點(diǎn),在底面上的射影,

(法一)(2)就是二面角的平面角,都是邊長為2的正三角形,即二面角的大小為45°

(3)取的中點(diǎn)為連接的中點(diǎn),,又,且在平面上,又的中點(diǎn),線段的長就是到平面的距離在等腰直角三角形中,,,,即到平面的距離是

 

(法二)(2),軸、軸、軸建立空間直角坐標(biāo)系,則點(diǎn)設(shè)平面的法向量為,則,解得,,平面的法向量

向量所成角為45°故二面角的大小為45°,

(3)由,的中點(diǎn)設(shè)平面的法向量為,則,解得到平面的距離為

19.(1)取值為0,1,2,3,4

的分布列為

0

1

2

3

4

P

(2)由

所以,當(dāng)時,由

當(dāng)時,由

即為所求‘

20.(1)在一次函數(shù)的圖像上,

 

于是,且

數(shù)列是以為首項,公比為2的等比數(shù)列

(3)      由(1)知

 

21.(1)由題意得:

點(diǎn)Q在以M、N為焦點(diǎn)的橢圓上,即

點(diǎn)Q的軌跡方程為

(2)

設(shè)點(diǎn)O到直線AB的距離為,則

當(dāng)時,等號成立

當(dāng)時,面積的最大值為3

22.(1)

(2)由題意知

(3)等價證明

由(1)知

  

 

 

 

 

 

 

 

 


同步練習(xí)冊答案