3.已知為R上的減函數.則滿足的實數x的取值范圍是 查看更多

 

題目列表(包括答案和解析)

已知R上的減函數,則滿足的實數x的取值范圍是(    )

A.(– 1,1)                                             B.(0,1)

C.                                  D.

 

 

查看答案和解析>>

已知R上的減函數,則滿足的實數x的取值范圍是(   )
A.(– 1,1)B.(0,1)
C.D.

查看答案和解析>>

已知f(x)為R上的減函數,則滿足f(
1
x
)>f(1)
的實數x的取值范圍是(  )
A、(-∞,1)
B、(1,+∞)
C、(-∞,0)∪(0,1)
D、(-∞,0)∪(1,+∞)

查看答案和解析>>

已知f(x)為R上的減函數,則滿足f(|
1
x
|)<f(1)的實數x的取值范圍是( 。
A、(-1,1)
B、(0,1)
C、(-1,0)∪(0,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

已知f(x)為R上的減函數,則滿足f(x2)<f(4)的實數x的取值范圍是(  )

查看答案和解析>>

 

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

B

C

C

B

C

D

A

D

A

B

二、填空題

13.24    14.        15.     16.    ①④   

三、解答題

17. 解:(Ⅰ)因為各組的頻率和等于1,故第四組的頻率:

……4分

直方圖如右所示……………          

   (Ⅱ)依題意,60及以上的分數所在的第三、四、五、六組,

頻率和為

所以,抽樣學生成績的合格率是%..........................6分

   (Ⅲ),, ,”的人數是9,18,15,3。所以從成績是60分以上(包括60分)的學生中選一人,該生是優(yōu)秀學生的概率是

 ……………………………………………………10分

18.(Ⅰ)證法一:取的中點G,連結FG、AG,

依題意可知:GF是的中位線,

則  GF∥

      AE∥,

所以GF∥AE,且GF=AE,即四邊形AEFG為平行四邊形,………3分

則EF∥AG,又AG平面,EF平面,

所以EF∥平面.                            ………6分

證法二:取DC的中點G,連結FG,GE.

,平面, GF平面∴FG∥平面.………3分

同理:∥平面,且,∴平面EFG∥平面,平面,

∴EF∥平面.                                        ………6分

證法三:連結EC延長交AD于K,連結, E、F分別CK、CD1的中點,

所以   FE∥D1K                                    ……3分

∵FE∥D1K,平面, 平面,∴EF∥平面.………6分

   (Ⅱ)解:.

.

的值為1.   ………12分

19.解:(1)

    ………3分

∵角A為鈍角,

                 ………………4分

取值最小值,

其最小值為……………………6分

   (2)由………………8分

       ,

…………10分

在△中,由正弦定理得:   ……12分

20.解:(1)

由題意得,經檢驗滿足條件。      …………2分

(2)由(1)知…………4分

(舍去)…                   ……………6分

當x變化時,的變化情況如下表:

x

-1

(-1,0)

0

(0,1)

1

 

0

+

 

-1

-4

-3

             ……………9分

∵關于x的方程上恰有兩個不同的實數根,

                                        …………12分

21.解:⑴設動點的坐標為P(x,y),則=(x,y-2),=(x,y+2),=(2-x,-y)

?=m||2

∴x2+y2-4=m[(x-2)2+y2

即(1-m)x2+(1-m)y2+4mx-4m-4=0,                      ………3分

若m=1,則方程為x=2,表示過點(2,0)且平行于y軸的直線;   ………4分

若m≠1,則方程化為:,表示以(,0)為圓心,以 為半徑的圓;                                                 ………6分

   (2)當m=2時,方程化為(x-4)2+y2=4;                       

,則,圓心到直線距離時,………8分

解得,又,所以圖形為上半個圓(包括與軸的兩個交點)……10分

故直線與半圓相切時;

當直線過軸上的兩個交點時知;

因此的取值范圍是.                            ………12分

22.解:(1)

2

3

51

200

196

192

1

4

                                                                   ………4分

   (2)由題意知數列的前50項成首項為200,公差為-4的等差數列,從第51項開始,奇數項均為1,偶數項均為4.                             

從而=                    

=.              ……………6分       

   (3)當時,因為,                       

   所以                          …………8分       

時,

因為,所以,       ……………10分       

時,

綜上:.                                      ……………12分

 


同步練習冊答案