(II)求的值. 20090519 查看更多

 

題目列表(包括答案和解析)

設(shè)的內(nèi)角A、B、C所對的邊分別為a、b、c,已知

(I) 求的周長;

(II)求的值。

 

查看答案和解析>>

(09年海淀區(qū)期中文)(13分)

       數(shù)列滿足,且

   (I)求,并證明數(shù)列是等比數(shù)列;

   (II)求的值。

查看答案和解析>>

已知向量,滿足,其中

    (I)求值;

    (II)求的值

查看答案和解析>>

在△ABC中,A、B、C所對邊的長分別為a、b、c,已知向量, (I)求A的大;(II)求的值.

查看答案和解析>>

(本小題滿分10分)

在△中,角所對的邊分別為,已知,,

(I) 求的值

(II)求的值

 

查看答案和解析>>

 

一、選擇題

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

B

C

C

B

C

D

A

D

A

B

二、填空題

13.24    14.        15.     16.    ①④   

三、解答題

17. 解:(Ⅰ)因為各組的頻率和等于1,故第四組的頻率:

……4分

直方圖如右所示……………          

   (Ⅱ)依題意,60及以上的分數(shù)所在的第三、四、五、六組,

頻率和為

所以,抽樣學(xué)生成績的合格率是%..........................6分

   (Ⅲ),,”的人數(shù)是9,18,15,3。所以從成績是60分以上(包括60分)的學(xué)生中選一人,該生是優(yōu)秀學(xué)生的概率是

 ……………………………………………………10分

18.(Ⅰ)證法一:取的中點G,連結(jié)FG、AG,

依題意可知:GF是的中位線,

則  GF∥

      AE∥,

所以GF∥AE,且GF=AE,即四邊形AEFG為平行四邊形,………3分

則EF∥AG,又AG平面,EF平面,

所以EF∥平面.                            ………6分

證法二:取DC的中點G,連結(jié)FG,GE.

,平面, GF平面∴FG∥平面.………3分

同理:∥平面,且,∴平面EFG∥平面,平面,

∴EF∥平面.                                        ………6分

證法三:連結(jié)EC延長交AD于K,連結(jié), E、F分別CK、CD1的中點,

所以   FE∥D1K                                    ……3分

∵FE∥D1K,平面, 平面,∴EF∥平面.………6分

   (Ⅱ)解:.

.

的值為1.   ………12分

19.解:(1)

    ………3分

∵角A為鈍角,

                 ………………4分

取值最小值,

其最小值為……………………6分

   (2)由………………8分

       ,

…………10分

在△中,由正弦定理得:   ……12分

20.解:(1)

由題意得,經(jīng)檢驗滿足條件。      …………2分

(2)由(1)知…………4分

(舍去)…                   ……………6分

當(dāng)x變化時,的變化情況如下表:

x

-1

(-1,0)

0

(0,1)

1

 

0

+

 

-1

-4

-3

             ……………9分

∵關(guān)于x的方程上恰有兩個不同的實數(shù)根,

                                        …………12分

21.解:⑴設(shè)動點的坐標(biāo)為P(x,y),則=(x,y-2),=(x,y+2),=(2-x,-y)

?=m||2,

∴x2+y2-4=m[(x-2)2+y2

即(1-m)x2+(1-m)y2+4mx-4m-4=0,                      ………3分

若m=1,則方程為x=2,表示過點(2,0)且平行于y軸的直線;   ………4分

若m≠1,則方程化為:,表示以(,0)為圓心,以 為半徑的圓;                                                 ………6分

   (2)當(dāng)m=2時,方程化為(x-4)2+y2=4;                       

設(shè),則,圓心到直線距離時,………8分

解得,又,所以圖形為上半個圓(包括與軸的兩個交點)……10分

故直線與半圓相切時;

當(dāng)直線過軸上的兩個交點時知;

因此的取值范圍是.                            ………12分

22.解:(1)

2

3

51

200

196

192

1

4

                                                                   ………4分

   (2)由題意知數(shù)列的前50項成首項為200,公差為-4的等差數(shù)列,從第51項開始,奇數(shù)項均為1,偶數(shù)項均為4.                             

從而=                    

=.              ……………6分       

   (3)當(dāng)時,因為,                       

   所以                          …………8分       

當(dāng)時,

因為,所以,       ……………10分       

當(dāng)時,

綜上:.                                      ……………12分

 


同步練習(xí)冊答案