題目列表(包括答案和解析)
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點P,Q,已知:=1:2, :=3:2,連結AQ,BP,設它們交于點R,若=a,=b.
(1)用a與 b表示;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
(本小題滿分14分)已知A(8,0),B、C兩點分別在y軸和x軸上運動,并且滿足。
(1)求動點P的軌跡方程。
(2)若過點A的直線L與動點P的軌跡交于M、N兩點,且
其中Q(-1,0),求直線L的方程.
(本小題滿分14分)
已知函數(shù),a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)討論的單調性;
(Ⅱ)設a=3,求在區(qū)間{1,}上值域。期中e=2.71828…是自然對數(shù)的底數(shù)。
(本小題滿分14分)
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實數(shù),n為正整數(shù)。
(Ⅰ)對任意實數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結論;
(Ⅲ)設0<a<b,Sn為數(shù)列{bn}的前n項和。是否存在實數(shù)λ,使得對任意正整數(shù)n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由。
(本小題滿分14分)
如圖(1),是等腰直角三角形,,、分別為、的中點,將沿折起, 使在平面上的射影恰為的中點,得到圖(2).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
1
11. . 12. 13. 14. 60 15. ①③
16.解:(Ⅰ)∵-
∴,(3分)
∴
又已知點為的圖像的一個對稱中心!
而 (6分)
(Ⅱ)若,
(9分)
∵,∴
即m的取值范圍是 (12分)
17. 解:(1)由已知得,∵,∴
∵、是方程的兩個根,∴
∴, ………………6分
(2)的可能取值為0,100,200,300,400
,,
,,
即的分布列為:
故………12分
18解法一:
(1)延長C
所以F為C1N的中點,B為CN的中點。????2分
又M是線段AC1的中點,故MF∥AN。?????3分
又MF平面ABCD,AN平面ABCD。
∴MF∥平面ABCD。 ???5分
(2)證明:連BD,由直四棱柱ABCD―A1B
可知A
∴A
又∵AC∩A
∴BD⊥平面ACC
在四邊形DANB中,DA∥BN且DA=BN,所以四邊形DANB為平行四邊形
故NA∥BD,∴NA⊥平面ACC
∴平面AFC1⊥ACC
(3)由(2)知BD⊥ACC
又由BD⊥AC可知NA⊥AC,
∴∠C
在Rt△C
∴平面AFC1與平面ABCD所成二面角的大小為30°或150°。???12分
19.解:(Ⅰ)因為成等差數(shù)列,點的坐標分別為所以且
由橢圓的定義可知點的軌跡是以為焦點長軸為4的橢圓(去掉長軸的端點),
所以.故頂點的軌跡方程為.…………4分
(Ⅱ)由題意可知直線的斜率存在,設直線方程為.
由得,
設兩點坐標分別為,則,
,所以線段CD中點E的坐標為,故CD垂直平分線l的方程為,令y=0,得與軸交點的橫坐標為,由得,解得,
又因為,所以.當時,有,此時函數(shù)遞減,所以.所以,.
故直線與軸交點的橫坐標的范圍是. ………………12分
20.解:(1)因為
所以設S=(1)
S=……….(2)(1)+(2)得:
=, 所以S=3012
(2)由兩邊同減去1,得
所以,
所以,是以2為公差以為首項的等差數(shù)列,
所以
(3)因為
所以
所以
>
21.解:(1)∵ ∴…1分
設 則 ……2分
∴在上為減函數(shù) 又 時,,
∴ ∴在上是減函數(shù)………4分(2)①
∵ ∴或時
∴…………………………………6分
又≤≤對一切恒成立 ∴≤≤ ……………8分
②顯然當或時,不等式成立 …………………………9分
當,原不等式等價于≥ ………10分
下面證明一個更強的不等式:≥…①
即≥……②亦即≥ …………………………11分
由(1) 知在上是減函數(shù) 又 ∴……12分
∴不等式②成立,從而①成立 又
∴>
綜合上面∴≤≤且≤≤時,原不等式成立 ……………………………14分
本資料由《七彩教育網》www.7caiedu.cn 提供!
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com