的中點(diǎn).M為線段AC1的中點(diǎn). (1)求證:直線MF∥平面ABCD, (2)求證:平面AFC1⊥平面ACC1A1, (3)求平面AFC1與與平面ABCD所成二面角的大小. 查看更多

 

題目列表(包括答案和解析)

如圖(1),在直角梯形ACC1A1中,∠CAA1=90°,AA1∥CC1,AA1=4,AC=3,CC1=1,點(diǎn)B在線段AC上,AB=2BC,BB1∥AA1,且BB1交A1C1于點(diǎn)B1.現(xiàn)將梯形ACC1A1沿直線BB1折成二面角A-BB1-C,設(shè)其大小為θ.
(1)在上述折疊過程中,若90°≤θ≤180°,請(qǐng)你動(dòng)手實(shí)驗(yàn)并直接寫出直線A1B1與平面BCC1B1所成角的取值范圍.(不必證明);
(2)當(dāng)θ=90°時(shí),連接AC、A1C1、AC1,得到如圖(2)所示的幾何體ABC-A1B1C1
(i)若M為線段AC1的中點(diǎn),求證:BM∥平面A1B1C1
(ii)記平面A1B1C1與平面BCC1B1所成的二面角為α(0<α≤90°),求cosa的值.

查看答案和解析>>

如圖,在棱長(zhǎng)為2的正方體ABCD-中,M為AB的中點(diǎn),E為的中點(diǎn),(說明:原圖沒有線段BC1,EO,AC1,請(qǐng)你自己在使用時(shí)將圖修改一下)

   (Ⅰ)求證:;

   (Ⅱ)求點(diǎn)M到平面DBC的距離;

   (Ⅲ)求二面角M-B1C-D的大小。

查看答案和解析>>

如圖,在棱長(zhǎng)為2的正方體ABCD-中,M為AB的中點(diǎn),E為的中點(diǎn),(說明:原圖沒有線段BC1,EO,AC1,請(qǐng)你自己在使用時(shí)將圖修改一下)

   (Ⅰ)求證:ME⊥BC1

   (Ⅱ)求點(diǎn)M到平面DB1C的距離;

   (Ⅲ)求二面角M-B1C-D的大小.

查看答案和解析>>

如圖,在棱長(zhǎng)為2的正方體ABCD-中,M為AB的中點(diǎn),E為的中點(diǎn),(說明:原圖沒有線段BC1,EO,AC1,請(qǐng)你自己在使用時(shí)將圖修改一下)

   (Ⅰ)求證:ME⊥BC1

   (Ⅱ)求點(diǎn)M到平面DB1C的距離;

   (Ⅲ)求二面角M-B1C-D的大小.

查看答案和解析>>

已知直四棱柱ABCD-A1B1C1D1的底面是菱形,F(xiàn)為棱BB1的中點(diǎn),M為線段AC1的中點(diǎn).
求證:
(Ⅰ)直線MF∥平面ABCD;
(Ⅱ)平面AFC1⊥平面ACC1A1

查看答案和解析>>

 

1-5  A D B D B    6-10 B B C C B

11. 6ec8aac122bd4f6e.  12.6ec8aac122bd4f6e 13. 6ec8aac122bd4f6e   14. 60     15. ①③

16.解:(Ⅰ)∵6ec8aac122bd4f6e-

   6ec8aac122bd4f6e

6ec8aac122bd4f6e,(3分)

 ∴6ec8aac122bd4f6e

     又已知點(diǎn)6ec8aac122bd4f6e6ec8aac122bd4f6e的圖像的一個(gè)對(duì)稱中心!6ec8aac122bd4f6e

     而6ec8aac122bd4f6e  (6分)

     (Ⅱ)若6ec8aac122bd4f6e,

      6ec8aac122bd4f6e  (9分)

6ec8aac122bd4f6e6ec8aac122bd4f6e,∴6ec8aac122bd4f6e

即m的取值范圍是6ec8aac122bd4f6e  (12分)

17. 解:(1)由已知得6ec8aac122bd4f6e,∵6ec8aac122bd4f6e,∴6ec8aac122bd4f6e

     ∵6ec8aac122bd4f6e、6ec8aac122bd4f6e是方程6ec8aac122bd4f6e的兩個(gè)根,∴6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e       ………………6分

(2)6ec8aac122bd4f6e的可能取值為0,100,200,300,400

6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e,6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e的分布列為:

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e………12分

18解法一:

   (1)延長(zhǎng)C1F交CB的延長(zhǎng)線于點(diǎn)N,連接AN。因?yàn)镕是BB1的中點(diǎn),

6ec8aac122bd4f6e    所以F為C1N的中點(diǎn),B為CN的中點(diǎn)。????2分

    又M是線段AC1的中點(diǎn),故MF∥AN。?????3分

    又MF6ec8aac122bd4f6e平面ABCDAN6ec8aac122bd4f6e平面ABCD。

    ∴MF∥平面ABCD。  ???5分

   (2)證明:連BD,由直四棱柱ABCDA1B1C1D1

    可知A1A⊥平面ABCD,又∵BD6ec8aac122bd4f6e平面ABCD,

    ∴A1ABD!咚倪呅蜛BCD為菱形,∴ACBD

    又∵ACA1A=A,ACAA6ec8aac122bd4f6e平面ACC1A1。

    ∴BD⊥平面ACC1A1。                  ?????????????????7分

    在四邊形DANB中,DA∥BN且DA=BN,所以四邊形DANB為平行四邊形

    故NA∥BD,∴NA⊥平面ACC1A1,又因?yàn)?i>NA6ec8aac122bd4f6e平面AFC1

    ∴平面AFC1ACC1A1

   (3)由(2)知BD⊥ACC1A1,又AC16ec8aac122bd4f6eACC1A1,∴BD⊥AC1,∴BD∥NA,∴AC1⊥NA。

    又由BD⊥AC可知NA⊥AC,

    ∴∠C1AC就是平面AFC1與平面ABCD所成二面角的平面角或補(bǔ)角。???10分

    在Rt△C1AC中,tan6ec8aac122bd4f6e,故∠C1AC=30°???12分

    ∴平面AFC1與平面ABCD所成二面角的大小為30°或150°。???12分

19.解:(Ⅰ)因?yàn)?sub>6ec8aac122bd4f6e成等差數(shù)列,點(diǎn)6ec8aac122bd4f6e的坐標(biāo)分別為6ec8aac122bd4f6e所以6ec8aac122bd4f6e6ec8aac122bd4f6e

由橢圓的定義可知點(diǎn)6ec8aac122bd4f6e的軌跡是以6ec8aac122bd4f6e為焦點(diǎn)長(zhǎng)軸為4的橢圓(去掉長(zhǎng)軸的端點(diǎn)),

所以6ec8aac122bd4f6e.故頂點(diǎn)6ec8aac122bd4f6e的軌跡6ec8aac122bd4f6e方程為6ec8aac122bd4f6e.…………4分

(Ⅱ)由題意可知直線6ec8aac122bd4f6e的斜率存在,設(shè)直線6ec8aac122bd4f6e方程為6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e,

設(shè)6ec8aac122bd4f6e兩點(diǎn)坐標(biāo)分別為6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

6ec8aac122bd4f6e,所以線段CD中點(diǎn)E的坐標(biāo)為6ec8aac122bd4f6e,故CD垂直平分線l的方程為6ec8aac122bd4f6e,令y=0,得6ec8aac122bd4f6e6ec8aac122bd4f6e軸交點(diǎn)的橫坐標(biāo)為6ec8aac122bd4f6e,由6ec8aac122bd4f6e6ec8aac122bd4f6e,解得6ec8aac122bd4f6e,

又因?yàn)?sub>6ec8aac122bd4f6e,所以6ec8aac122bd4f6e.當(dāng)6ec8aac122bd4f6e時(shí),有6ec8aac122bd4f6e,此時(shí)函數(shù)6ec8aac122bd4f6e遞減,所以6ec8aac122bd4f6e.所以,6ec8aac122bd4f6e

故直線6ec8aac122bd4f6e6ec8aac122bd4f6e軸交點(diǎn)的橫坐標(biāo)的范圍是6ec8aac122bd4f6e.           ………………12分

20.解:(1)因?yàn)?sub>6ec8aac122bd4f6e

所以設(shè)S=6ec8aac122bd4f6e6ec8aac122bd4f6e(1)

        S=6ec8aac122bd4f6e……….(2)(1)+(2)得:

6ec8aac122bd4f6e   =6ec8aac122bd4f6e,   所以S=3012

(2)由6ec8aac122bd4f6e兩邊同減去1,得6ec8aac122bd4f6e

所以6ec8aac122bd4f6e,

所以6ec8aac122bd4f6e,6ec8aac122bd4f6e是以2為公差以6ec8aac122bd4f6e為首項(xiàng)的等差數(shù)列,

所以6ec8aac122bd4f6e6ec8aac122bd4f6e

(3)因?yàn)?sub>6ec8aac122bd4f6e

    所以6ec8aac122bd4f6e6ec8aac122bd4f6e

所以6ec8aac122bd4f6e

>6ec8aac122bd4f6e

21.解:(1)∵ 6ec8aac122bd4f6e ∴6ec8aac122bd4f6e…1分

    設(shè)6ec8aac122bd4f6e 6ec8aac122bd4f6e6ec8aac122bd4f6e  ……2分

6ec8aac122bd4f6e6ec8aac122bd4f6e上為減函數(shù)  又6ec8aac122bd4f6e    6ec8aac122bd4f6e時(shí),6ec8aac122bd4f6e6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e上是減函數(shù)………4分(2)①

6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e時(shí)

6ec8aac122bd4f6e ∴6ec8aac122bd4f6e…………………………………6分

6ec8aac122bd4f6e又≤6ec8aac122bd4f6e6ec8aac122bd4f6e對(duì)一切6ec8aac122bd4f6e恒成立 ∴6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e        ……………8分

②顯然當(dāng)6ec8aac122bd4f6e6ec8aac122bd4f6e時(shí),不等式成立                 …………………………9分

當(dāng)6ec8aac122bd4f6e,原不等式等價(jià)于6ec8aac122bd4f6e6ec8aac122bd4f6e ………10分

下面證明一個(gè)更強(qiáng)的不等式:6ec8aac122bd4f6e6ec8aac122bd4f6e…①

6ec8aac122bd4f6e6ec8aac122bd4f6e……②亦即6ec8aac122bd4f6e6ec8aac122bd4f6e …………………………11分

由(1) 知6ec8aac122bd4f6e6ec8aac122bd4f6e上是減函數(shù)   又6ec8aac122bd4f6e  ∴6ec8aac122bd4f6e……12分

∴不等式②成立,從而①成立  又6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e6ec8aac122bd4f6e

綜合上面∴6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e時(shí),原不等式成立     ……………………………14分

 

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習(xí)冊(cè)答案