題目列表(包括答案和解析)
點(diǎn)在直線上,若存在過的直線交拋物線于兩點(diǎn),且,則稱點(diǎn)為“ 點(diǎn)”,那么下列結(jié)論中正確的是 ( )
A.直線上的所有點(diǎn)都是“點(diǎn)”
B.直線上僅有有限個(gè)點(diǎn)是“點(diǎn)”
C.直線上的所有點(diǎn)都不是“點(diǎn)”
D.直線上有無窮多個(gè)點(diǎn)(點(diǎn)不是所有的點(diǎn))是“點(diǎn)”[來源:學(xué)?啤>W(wǎng)]
中,點(diǎn)在邊中線上,,則·()的
最小值為____________。
在平面直角坐標(biāo)系中,已知三個(gè)點(diǎn)列,其中,滿足向量與向量共線,且點(diǎn)列在方向向量為的直線上,。
(1) 試用與表示;
(2) 若與兩項(xiàng)中至少有一項(xiàng)是的最小值,試求的取值范圍。
在平面直角坐標(biāo)系中,已知三個(gè)點(diǎn)列,其中,滿足向量與向量平行,并且點(diǎn)列在斜率為6的同一直線上,。
證明:數(shù)列是等差數(shù)列;
試用與表示;
設(shè),是否存在這樣的實(shí)數(shù),使得在與兩項(xiàng)中至少有一項(xiàng)是數(shù)列的最小項(xiàng)?若存在,請求出實(shí)數(shù)的取值范圍;若不存在,請說明理由;
若,對于區(qū)間[0,1]上的任意l,總存在不小于2的自然數(shù)k,當(dāng)n??k時(shí),恒成立,求k的最小值.
在某校舉行的數(shù)學(xué)競賽中,全體參賽學(xué)生的競賽成績近似服從正態(tài)分布。已知成績在90分以上(含90分)的學(xué)生有12名。
(Ⅰ)、試問此次參賽學(xué)生總數(shù)約為多少人?
(Ⅱ)、若該校計(jì)劃獎(jiǎng)勵(lì)競賽成績排在前50名的學(xué)生,試問設(shè)獎(jiǎng)的分?jǐn)?shù)線約為多少分?
可共查閱的(部分)標(biāo)準(zhǔn)正態(tài)分布表
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
1.2 1.3 1.4 1.9 2.0 2.1 | 0.8849 0.9032 0.9192 0.9713 0.9772 0.9821 | 0.8869 0.9049 0.9207 0.9719 0.9778 0.9826 | 0.888 0.9066 0.9222 0.9726 0.9783 0.9830 | 0.8907 0.9082 0.9236 0.9732 0.9788 0.9834 | 0.8925 0.9099 0.9251 0.9738 0.9793 0.9838 | 0.8944 0.9115 0.9265 0.9744 0.9798 0.9842 | 0.8962 0.9131 0.9278 0.9750 0.9803 0.9846 | 0.8980 0.9147 0.9292 0.9756 0.9808 0.9850 | 0.8997 0.9162 0.9306 0.9762 0.9812 0.9854 | 0.9015 0.9177 0.9319 0.9767 0.9817 0.9857 |
點(diǎn)評:本小題主要考查正態(tài)分布,對獨(dú)立事件的概念和標(biāo)準(zhǔn)正態(tài)分布的查閱,考查運(yùn)用概率統(tǒng)計(jì)知識(shí)解決實(shí)際問題的能力。
一、選擇題(5分×12=60分)
B B D D C B B D D C A A
二、填空題(4分x 4=16分)
13.80 14.32 15. 16.①③
三、解答題(12分×5+14分=74分)
17.解:(1)2分
……………………4分
∴的最小正周期為 …………………6分
(2)∵成等比數(shù)列 ∴ 又
∴ ……………………………………4分
又∵ ∴ ……………………………………………………10分
……………………………………12分
18.解:(1)設(shè)公差由成等比數(shù)列得 …………………1分
∴即 ∴舍去或 …………………………3分
∴ ………………………………………………4分
∴ ………………………………………………6分
(2) ∵ ………………………………………………7分
∴…① …………8分
…………② …………9分
①-②得:
∴ ………………………………………………12分
19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,
……………………………………………………4分
(2)設(shè)符合題設(shè)條件,抽取次數(shù)恰為3的事件記為B,則
………………………………………………12分
20.解:(1)連結(jié) 為正△ …1分
面3分
面面
即點(diǎn)的位置在線段的四等分點(diǎn)且靠近處 ………………………………………6分
(2)過作于,連
由(1)知面(三垂線定理)
∴為二面角的平面角……9分
在中,
在中,
∴二面角的大小為 ………………………………………12分
(說明:若用空間向量解,請參照給分)
21.解:(1) 由得 ……2分
①當(dāng)時(shí),在內(nèi)是增函數(shù),故無最小值………………………3分
②當(dāng)時(shí),
在處取得極小值 ………………………5分
由 解得:≤ ∴≤ …………6分
≥
(2)由(1)知在區(qū)間上均為增函數(shù)
又,故要在內(nèi)為增函數(shù)
≤ ≥
必須: 或 ………………………………………10分
≤ ≤
∴≤或≥ ∴實(shí)數(shù)的取值范圍是:…………………12分
22.解:(1)如圖,設(shè)為橢圓的下焦點(diǎn),連結(jié)
∴ ∵∴…3分
∵ ∴ ………4分
∴的離心率為
…………………………………………………………6分
(2)∵,∴拋物線方程為:設(shè)點(diǎn)則 ∵
∴點(diǎn)處拋物線的切線斜率 ……………………………………………………8分
則切線方程為:……………………………………………………9分
又∵過點(diǎn) ∴ ∴ ∴
代入橢圓方程得: ……………………………………………………11分
∴≥ ………………13分
當(dāng)且僅當(dāng) 即 上式取等號(hào)
∴此時(shí)橢圓的方程為: ………………………………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com