如圖.在直四棱柱中. 查看更多

 

題目列表(包括答案和解析)

如圖,在直四棱柱中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2, AA=2,  E、E、F分別是棱AD、AA、AB的中點(diǎn)。               

(Ⅰ)證明:直線∥平面;w.w.w.k.s.5.u.c.o.m           

(Ⅱ)求二面角的余弦值

查看答案和解析>>

如圖,在直四棱柱中,點(diǎn)分別在上,且,,點(diǎn)的距離之比為,則三棱錐的體積比         .

 

 

查看答案和解析>>

如圖,在直四棱柱中,點(diǎn)分別在上,且,,點(diǎn)的距離之比為,則三棱錐的體積比         .

 

 

查看答案和解析>>

如圖,在直四棱柱中,已知,

(Ⅰ)求證:;

(Ⅱ)設(shè)上一點(diǎn),試確定的位置,使平面,并說明理由.

 

查看答案和解析>>

如圖,在直四棱柱中,底面為平行四邊形,且,,的中點(diǎn).

(1) 證明:∥平面;

(2)求直線與平面所成角的正弦值.

 

查看答案和解析>>

一、選擇題(5分×12=60分)   

    B  B  D  D  C  B  B  D  D  C  A  A

二、填空題(4分x 4=16分)

  13.0.1  14.63  15.  16.①③

三、解答題(12分×5+14分=74分)

17.解:(1)2分

        ……………………4分

         ∴的最小正周期為 …………………6分(2)∵成等比數(shù)列   ∴

       ………………………8分

   ∴

   ∴         ………………………………………………10分

18.解:(1)設(shè)公差成等比數(shù)列得 …………………1分

∴即舍去或     …………………………3分

           ………………………………………………4分

              ………………………………………………5分

       ………………………………………7分

(2)                ………………………………………………8分

當(dāng)時,  ………………………………………10分

當(dāng)時,   …………………………7分

19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,

                ……………………………………………………4分

(2)可能值為        ……………………………………………………………5分

      …………………………10分

     …………………………12分

20.解:(1)連結(jié)    為正△ …1分

                  

                                       3分

          

 

即點(diǎn)的位置在線段的四等分點(diǎn)且靠近處  ………………………………………6分(2)過,連

由(1)知(三垂線定理)

為二面角的平面角……9分

   

   

中,

中,

∴二面角的大小為     ………………………………………12分

(說明:若用空間向量解,請參照給分)

21.解:(1)設(shè),由

 

……………………2分

…………………………12分

又∵為定值,        ………………5分

為定值,∴為定值。

(2)∵,∴拋物線方程為:設(shè)點(diǎn)

由(1)知         ………………………………8分

又∵過點(diǎn)  ∴  ∴  ∴………………………………9分

代入橢圓方程得:

  ………………11分

                  

當(dāng)且僅當(dāng)                 即           上式取等號

                    

∴此時橢圓的方程為:             ………………………………………12分

22.解:(1)∵  ∴…1分

    設(shè)   ……2分

上為減函數(shù)  又   

時,,∴上是減函數(shù)………4分(2)①∵

 ∴…………………………………6分

又≤對一切恒成立 ∴        ……………8分

②顯然當(dāng)時,不等式成立                 …………………………9分

當(dāng),原不等式等價于 ………10分

下面證明一個更強(qiáng)的不等式:…①

……②亦即 …………………………11分

由(1) 知上是減函數(shù)   又  ∴……12分

∴不等式②成立,從而①成立  又

綜合上面∴時,原不等式成立     ……………………………14分

 

 

 


同步練習(xí)冊答案