設(shè)函數(shù) 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=(x-a)(x-b)(x-c)(a、b、c是兩兩不等的常數(shù)),則
a
f′(a)
+
b
f′(b)
+
c
f′(c)
=
 

查看答案和解析>>

設(shè)函數(shù)f(x)=cos(2x+
π
3
)+sin2x.
(1)求函數(shù)f(x)的最大值和最小正周期.
(2)設(shè)A,B,C為△ABC的三個(gè)內(nèi)角,若cosB=
1
3
,f(
C
3
)=-
1
4
,且C為非鈍角,求sinA.

查看答案和解析>>

設(shè)函數(shù)f(x)=
ax2+bx+c
(a<0)
的定義域?yàn)镈,若所有點(diǎn)(s,f(t))(s,t∈D)構(gòu)成一個(gè)正方形區(qū)域,則a的值為( 。
A、-2B、-4
C、-8D、不能確定

查看答案和解析>>

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱軸是直線x=
π
8

(1)求φ;
(2)若函數(shù)y=2f(x)+a,(a為常數(shù)a∈R)在x∈[
11π
24
4
]
上的最大值和最小值之和為1,求a的值.

查看答案和解析>>

設(shè)函數(shù)f(x)=
x-3,x≥10
f(x+5),x<10
,則f(5)=
 

查看答案和解析>>

一、選擇題(5分×12=60分)   

    B  B  D  D  C  B  B  D  D  C  A  A

二、填空題(4分x 4=16分)

  13.0.1  14.63  15.  16.①③

三、解答題(12分×5+14分=74分)

17.解:(1)2分

        ……………………4分

         ∴的最小正周期為 …………………6分(2)∵成等比數(shù)列   ∴

       ………………………8分

   ∴

   ∴         ………………………………………………10分

18.解:(1)設(shè)公差成等比數(shù)列得 …………………1分

∴即舍去或     …………………………3分

           ………………………………………………4分

              ………………………………………………5分

       ………………………………………7分

(2)                ………………………………………………8分

當(dāng)時(shí),  ………………………………………10分

當(dāng)時(shí),   …………………………7分

19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,

                ……………………………………………………4分

(2)可能值為        ……………………………………………………………5分

      …………………………10分

     …………………………12分

20.解:(1)連結(jié)    為正△ …1分

                  

                                       3分

          

 

即點(diǎn)的位置在線段的四等分點(diǎn)且靠近處  ………………………………………6分(2)過(guò),連

由(1)知(三垂線定理)

為二面角的平面角……9分

   

   

中,

中,

∴二面角的大小為     ………………………………………12分

(說(shuō)明:若用空間向量解,請(qǐng)參照給分)

21.解:(1)設(shè),由

 

……………………2分

…………………………12分

又∵為定值,        ………………5分

為定值,∴為定值。

(2)∵,∴拋物線方程為:設(shè)點(diǎn)

由(1)知         ………………………………8分

又∵過(guò)點(diǎn)  ∴  ∴  ∴………………………………9分

代入橢圓方程得:

  ………………11分

                  

當(dāng)且僅當(dāng)                 即           上式取等號(hào)

                    

∴此時(shí)橢圓的方程為:             ………………………………………12分

22.解:(1)∵  ∴…1分

    設(shè)   ……2分

上為減函數(shù)  又   

時(shí),,∴上是減函數(shù)………4分(2)①∵時(shí)

 ∴…………………………………6分

又≤對(duì)一切恒成立 ∴        ……………8分

②顯然當(dāng)時(shí),不等式成立                 …………………………9分

當(dāng),原不等式等價(jià)于 ………10分

下面證明一個(gè)更強(qiáng)的不等式:…①

……②亦即 …………………………11分

由(1) 知上是減函數(shù)   又  ∴……12分

∴不等式②成立,從而①成立  又

綜合上面∴時(shí),原不等式成立     ……………………………14分

 

 

 


同步練習(xí)冊(cè)答案