(3) 如圖2.若在圓開始運動的同時.一動點P從B點出發(fā).沿BA方向以1個單位/秒的速度運動.設(shè)秒時點P到動圓圓心C的距離為s.求s與的關(guān)系式,中.動點P自剛接觸圓面起.經(jīng)多長時間后離開了圓面?(5) 查看更多

 

題目列表(包括答案和解析)

如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=13cm,BC=16cm,CD=5cm.以AB為直徑作圓O,動點P沿AD方向從點A開始向點D以1厘米/秒的速度運動,動點Q沿CB方向從點C開始向精英家教網(wǎng)點B以2厘米/秒的速度運動,點P、Q分別從A、C兩點同時出發(fā),當(dāng)其中一點停止時,另一點也隨之停止運動.
(1)求⊙O的半徑長.
(2)求四邊形PQCD的面積y關(guān)于P、Q運動時間t的函數(shù)表達式,并求出當(dāng)四邊形PQCD為等腰梯形時,四邊形PQCD的面積.
(3)是否存在某一時刻t,使直線PQ與⊙O相切?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=13cm,BC=16cm,CD=5cm.以AB為直徑作圓O,動點P沿AD方向從點A開始向點D以1厘米/秒的速度運動,動點Q沿CB方向從點C開始向點B以2厘米/秒的速度運動,點P、Q分別從A、C兩點同時出發(fā),當(dāng)其中一點停止時,另一點也隨之停止運動。
(1)求⊙O的半徑長;
(2)求四邊形PQCD的面積y關(guān)于P、Q運動時間t的函數(shù)表達式,并求出當(dāng)四邊形PQCD為等腰梯形時,四邊形PQCD的面積;
(3)是否存在某一時刻t,使直線PQ與⊙O相切?若存在,求出t的值;若不存在,請說明理由。

查看答案和解析>>

如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=13cm,BC=16cm,CD=5cm.以AB為直徑作圓O,動點P沿AD方向從點A開始向點D以1厘米/秒的速度運動,動點Q沿CB方向從點C開始向點B以2厘米/秒的速度運動,點P、Q分別從A、C兩點同時出發(fā),當(dāng)其中一點停止時,另一點也隨之停止運動.
(1)求⊙O的半徑長.
(2)求四邊形PQCD的面積y關(guān)于P、Q運動時間t的函數(shù)表達式,并求出當(dāng)四邊形PQCD為等腰梯形時,四邊形PQCD的面積.
(3)是否存在某一時刻t,使直線PQ與⊙O相切?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

如圖,平面直角坐標(biāo)系的單位是厘米,直線AB的解析式為y=
3
x-6
3
,分別與x軸、y軸相交于A、B兩點.動點C從點B出發(fā)沿射線B以3cm/秒的速度運動,以C點為圓心作半徑為1cm的⊙C
(1)求A、B兩點的坐標(biāo);
(2)設(shè)⊙C運動的時間為t,當(dāng)⊙C和坐標(biāo)軸相切時,則時間t的值是
2
3
秒或4-
2
9
3
秒或4+
2
9
3
2
3
秒或4-
2
9
3
秒或4+
2
9
3
:(直接寫出答案,不必寫推理過程.)
(3)在點C運動的同時,另有動點P從O點出發(fā)沿射線OA以2cm/秒的速度運動,以P點為圓心作半徑為3cm的⊙P;若點C與點P同時分別從點B、點O開始運動,問是否存在一點P,使⊙P與⊙C相外切?如果存在,求點P的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

如圖,平面直角坐標(biāo)系的單位是厘米,直線AB的解析式為y=
3
x-6
3
,分別與x 軸y軸相交于A、B兩點.點C在射線BA上以3cm/秒的速度運動,以C點為圓心作半徑為1cm的⊙C.點P以2cm/秒的速度在線段OA上來回運動,過點P作直線l垂直與x軸.
(1)求A、B兩點的坐標(biāo);
(2)若點C與點P同時從點B、點O開始運動,經(jīng)過了幾秒,直線l與⊙C第一次相切;當(dāng)直線l與⊙C第2次相切時求點P的坐標(biāo).

查看答案和解析>>


同步練習(xí)冊答案