(3)分解因式:(為正整數(shù)).結果是 . 查看更多

 

題目列表(包括答案和解析)

在前面的學習中,我們通過對同一面積的不同表達和比較,根據(jù)圖①和圖②發(fā)現(xiàn)并驗證了平方差公式和完全平方公式

這種利用面積關系解決問題的方法,使抽象的數(shù)量關系因集合直觀而形象化。

【研究速算】

提出問題:47×43,56×54,79×71,……是一些十位數(shù)字相同,且個位數(shù)字之和是10的兩個兩位數(shù)相乘的算式,是否可以找到一種速算方法?

幾何建模:

用矩形的面積表示兩個正數(shù)的乘積,以47×43為例:

(1)畫長為47,寬為43的矩形,如圖③,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形的上面。

(2)分析:原矩形面積可以有兩種不同的表達方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個位數(shù)字3與7的積,構成運算結果。

歸納提煉:

兩個十位數(shù)字相同,并且個位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)        .

【研究方程】

提出問題:怎么圖解一元二次方程

幾何建模:

(1)變形:

(2)畫四個長為,寬為的矩形,構造圖④

(3)分析:圖中的大正方形面積可以有兩種不同的表達方式,或四個長,寬的矩形之和,加上中間邊長為2的小正方形面積

即:

歸納提煉:求關于的一元二次方程的解

要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)

【研究不等關系】

提出問題:怎么運用矩形面積表示的大小關系(其中)?

幾何建模:

(1)畫長,寬的矩形,按圖⑤方式分割

(2)變形:

(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為,

畫點部分的面積可表示為,由圖形的部分與整體的關系可知:,即

歸納提煉:

,時,表示的大小關系

根據(jù)題意,設,,要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)

 

查看答案和解析>>

在前面的學習中,我們通過對同一面積的不同表達和比較,根據(jù)圖①和圖②發(fā)現(xiàn)并驗證了平方差公式和完全平方公式
這種利用面積關系解決問題的方法,使抽象的數(shù)量關系因集合直觀而形象化。

【研究速算】
提出問題:47×43,56×54,79×71,……是一些十位數(shù)字相同,且個位數(shù)字之和是10的兩個兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:
用矩形的面積表示兩個正數(shù)的乘積,以47×43為例:
(1)畫長為47,寬為43的矩形,如圖③,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形的上面。
(2)分析:原矩形面積可以有兩種不同的表達方式,47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個位數(shù)字3與7的積,構成運算結果。

歸納提煉:
兩個十位數(shù)字相同,并且個位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)       .
【研究方程】
提出問題:怎么圖解一元二次方程
幾何建模:
(1)變形:
(2)畫四個長為,寬為的矩形,構造圖④

(3)分析:圖中的大正方形面積可以有兩種不同的表達方式,或四個長,寬的矩形之和,加上中間邊長為2的小正方形面積
即:





歸納提煉:求關于的一元二次方程的解
要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)
【研究不等關系】
提出問題:怎么運用矩形面積表示的大小關系(其中)?
幾何建模:
(1)畫長,寬的矩形,按圖⑤方式分割

(2)變形:
(3)分析:圖⑤中大矩形的面積可以表示為;陰影部分面積可以表示為,
畫點部分的面積可表示為,由圖形的部分與整體的關系可知:,即

歸納提煉:
時,表示的大小關系
根據(jù)題意,設,,要求參照上述研究方法,畫出示意圖,并寫出幾何建模步驟(用鋼筆或圓珠筆畫圖,并標注相關線段的長)

查看答案和解析>>

數(shù)形結合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數(shù)量關系的問題,或者把數(shù)量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.例如,求1+2+3+4+…+n的值,其中n是正整數(shù).對于這個求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.如果采用數(shù)形結合的方法,即用圖形的性質來說明數(shù)量關系的事實,那就非常的直觀.現(xiàn)利用圖形的性質來求1+2+3+4+…+n 的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數(shù)為n(n+1)個,因此,組成一個三角形小圓圈的個數(shù)為,即1+2+3+4+…+n=。
(1)仿照上述數(shù)形結合的思想方法,設計相關圖形,求1+3+5+7+…+(2n-1)的值,其中 n 是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
(2)試設計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù)。(要求:畫出圖形,并利用圖形做必要的推理說明)

查看答案和解析>>

閱讀下列因式分解的過程,再回答所提出的問題:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(1+x)]=(1+x)2[1+x]=(1+x)3。
(1)上述分解因式的方法是(    ),共應用了(    )次;
(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2010,則需要應用上述方法(    )次,分解因式后的結果是(    );
(3)請用以上的方法分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)),必須有簡要的過程。

查看答案和解析>>

(1)寫一個多項式,再把它分解因式(要求:多項式含有字母m和n,系數(shù)、次數(shù)不限,并能先用提取公因式法再用公式法分解);
(2)閱讀下列分解因式的過程,再回答所提出的問題:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]①
=(1+x)2(1+x)②
=(1+x)3
①上述分解因式的方法是_________,由②到③這一步的根據(jù)是_________;
②若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2006,結果是_________;
③分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù))。

查看答案和解析>>


同步練習冊答案