點N.先向左平移3個單位.又向上平移2個單位得到點M.則點M的坐標為 A.(6.O) B. C. D.(O.O) 查看更多

 

題目列表(包括答案和解析)

我們知道,對于二次函數(shù)y=a(x+m)2+k的圖象,可由函數(shù)y=ax2的圖象進行向左或向右平移一次、再向上或向下移一次平移得到,我們稱函數(shù)y=ax2為“基本函數(shù)”,而稱由它平移得到的二次函數(shù)y=a(x+m)2+k為“基本函數(shù)”y=ax2的“朋友函數(shù)”.左右、上下平移的路徑稱為朋友路徑,對應點之間的線段距離
m2+k2
稱為朋友距離.
由此,我們所學的函數(shù):二次函數(shù)y=ax2,函數(shù)y=kx和反比例函數(shù)y=
k
x
都可以作為“基本函數(shù)”,并進行向左或向右平移一次、再向上或向下平移一次得到相應的“朋友函數(shù)”.
如一次函數(shù)y=2x-5是基本函數(shù)y=2x的朋友函數(shù),由y=2x-5=2(x-1)-3朋友路徑可以是向右平移1個單位,再向下平移3個單位,朋友距離=
12+32
=
10

(1)探究一:小明同學經(jīng)過思考后,為函數(shù)y=2x-5又找到了一條朋友路徑為由基本函數(shù)y=2x先向
 
,再向下平移7單位,相應的朋友距離為
 

(2)探究二:已知函數(shù)y=x2-6x+5,求它的基本函數(shù),朋友路徑,和相應的朋友距離.
(3)探究三:為函數(shù)y=
3x+4
x+1
和它的基本函數(shù)y=
1
x
,找到朋友路徑,并求相應的朋友距離.

查看答案和解析>>

我們知道,對于二次函數(shù)y=a(x+m)2+k的圖象,可由函數(shù)y=ax2的圖象進行向左或向右平移一次、再向上或向下移一次平移得到,我們稱函數(shù)y=ax2為“基本函數(shù)”,而稱由它平移得到的二次函數(shù)y=a(x+m)2+k為“基本函數(shù)”y=ax2的“朋友函數(shù)”.左右、上下平移的路徑稱為朋友路徑,對應點之間的線段距離
m2+k2
稱為朋友距離.
由此,我們所學的函數(shù):二次函數(shù)y=ax2,函數(shù)y=kx和反比例函數(shù)y=
k
x
都可以作為“基本函數(shù)”,并進行向左或向右平移一次、再向上或向下平移一次得到相應的“朋友函數(shù)”.
如一次函數(shù)y=2x-5是基本函數(shù)y=2x的朋友函數(shù),由y=2x-5=2(x-1)-3朋友路徑可以是向右平移1個單位,再向下平移3個單位,朋友距離=
12+32
=
10

(1)探究一:小明同學經(jīng)過思考后,為函數(shù)y=2x-5又找到了一條朋友路徑為由基本函數(shù)y=2x先向______,再向下平移7單位,相應的朋友距離為______.
(2)探究二:已知函數(shù)y=x2-6x+5,求它的基本函數(shù),朋友路徑,和相應的朋友距離.
(3)探究三:為函數(shù)y=
3x+4
x+1
和它的基本函數(shù)y=
1
x
,找到朋友路徑,并求相應的朋友距離.

查看答案和解析>>

19、如圖,關于直線l對稱的兩個圓的半徑都為1,等邊三角形ABC,LMN的頂點分別在兩圓上,AB⊥l,MN∥l,將l左側(cè)的圖形進行平移、旋轉(zhuǎn)或翻折變換(以下所述“變換”均值這3種變換之一),可以與l右側(cè)的圖形重合.
(1)通過兩次變換,不難實現(xiàn)上述重合的目的.例如,將l左側(cè)圖先繞圓心O1,按逆時針方向旋轉(zhuǎn)
30°
度,再沿l翻折,就可與右側(cè)的圖形重合;又如,將l左側(cè)圖形先向右平移2個單位,再繞圓心按順時針方向旋轉(zhuǎn)
30°
度,就與右側(cè)圖形重合;
(2)能否將l左側(cè)圖形只進行一次變換,就可使它與l右側(cè)圖形重合?如果能,請說明變換過程;如果不能,請你設計一種“將l左側(cè)圖形先沿著過點O1的某直線翻折,再向右適當平移”(兩次變換)即可與右側(cè)圖形重合的方案.(畫出該直線并予以說明)

查看答案和解析>>

如圖,關于直線l對稱的兩個圓的半徑都為1,等邊三角形ABC,LMN的頂點分別在兩圓上,AB⊥l,MN∥l,將l左側(cè)的圖形進行平移、旋轉(zhuǎn)或翻折變換(以下所述“變換”均值這3種變換之一),可以與l右側(cè)的圖形重合.
(1)通過兩次變換,不難實現(xiàn)上述重合的目的.例如,將l左側(cè)圖先繞圓心O1,按逆時針方向旋轉(zhuǎn)______度,再沿l翻折,就可與右側(cè)的圖形重合;又如,將l左側(cè)圖形先向右平移2個單位,再繞圓心按順時針方向旋轉(zhuǎn)______度,就與右側(cè)圖形重合;
(2)能否將l左側(cè)圖形只進行一次變換,就可使它與l右側(cè)圖形重合?如果能,請說明變換過程;如果不能,請你設計一種“將l左側(cè)圖形先沿著過點O1的某直線翻折,再向右適當平移”(兩次變換)即可與右側(cè)圖形重合的方案.(畫出該直線并予以說明)

查看答案和解析>>

如圖,關于直線l對稱的兩個圓的半徑都為1,等邊三角形ABC,LMN的頂點分別在兩圓上,AB⊥l,MNl,將l左側(cè)的圖形進行平移、旋轉(zhuǎn)或翻折變換(以下所述“變換”均值這3種變換之一),可以與l右側(cè)的圖形重合.
(1)通過兩次變換,不難實現(xiàn)上述重合的目的.例如,將l左側(cè)圖先繞圓心O1,按逆時針方向旋轉(zhuǎn)______度,再沿l翻折,就可與右側(cè)的圖形重合;又如,將l左側(cè)圖形先向右平移2個單位,再繞圓心按順時針方向旋轉(zhuǎn)______度,就與右側(cè)圖形重合;
(2)能否將l左側(cè)圖形只進行一次變換,就可使它與l右側(cè)圖形重合?如果能,請說明變換過程;如果不能,請你設計一種“將l左側(cè)圖形先沿著過點O1的某直線翻折,再向右適當平移”(兩次變換)即可與右側(cè)圖形重合的方案.(畫出該直線并予以說明)

精英家教網(wǎng)

查看答案和解析>>


同步練習冊答案