題目列表(包括答案和解析)
(本小題滿分8分)
已知,在△ABC中,∠BAC=90°,AB=AC,BC=,點(diǎn)D、E在BC邊上(均不與點(diǎn)B、C重合,點(diǎn)D始終在點(diǎn)E左側(cè)),且∠DAE=45°.
1.(1)請?jiān)趫D①中找出兩對(duì)相似但不全等的三角形,寫在橫線上 , ;
2.(2)設(shè)BE=m,CD=n,求m與n的函數(shù)關(guān)系式,并寫出自變量n的取值范圍;
3.(3)如圖②,當(dāng)BE=CD時(shí),求DE的長;
4.(4)求證:無論BE與CD是否相等,都有DE2=BD2+CE2.
(本小題滿分10分)已知,等腰Rt△ABC中,點(diǎn)O是斜邊的中點(diǎn),△MPN是直角三角形,固定△ABC,滑動(dòng)△MPN,在滑動(dòng)過程中始終保持點(diǎn)P在AC上,且 PM⊥AB,PN⊥BC,垂足分別為E、F.
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),OE、OF的數(shù)量和位置關(guān)系分別是____ __.
(2)當(dāng)△MPN移動(dòng)到圖2的位置時(shí),(1)中的結(jié)論還成立嗎?請說明理由.
(3)如圖3,等腰Rt△ABC的腰長為6,點(diǎn)P在AC的延長線上時(shí),Rt△MPN的邊PM
與AB的延長線交于點(diǎn)E,直線BC與直線NP交于點(diǎn)F,OE交BC于點(diǎn)H,且 EH: HO=2:5,則BE的長是多少?
(本小題滿分14分)
已知:如圖,拋物線與y軸交于點(diǎn)C(0,), 與x軸交于點(diǎn)A、 B,點(diǎn)A的坐標(biāo)為(2,0).
(1)求該拋物線的解析式;
(2)點(diǎn)P是線段AB上的動(dòng)點(diǎn),過點(diǎn)P作PD∥BC,交AC于點(diǎn)D,連接CP.當(dāng)△CPD的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)Q,與直線BC交于點(diǎn)F,點(diǎn)M 的坐標(biāo)為(,0).問:是否存在這樣的直線,使得△OMF是等腰三角形?若存 在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
(本小題滿分9分)已知:如圖,△ABC是等邊三角形,過AC邊上的點(diǎn)D作DG∥BC,交AB于點(diǎn)G,在GD的延長線上取點(diǎn)E,使DE=DC,連接AE、BD.
(1)求證:△AGE≌△DAB;
(2)過點(diǎn)E作EF∥DB,交BC于點(diǎn)F,連AF,求∠AFE的度數(shù).
(本小題滿分10分)
學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個(gè)銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.
類似的,可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(duì)(sad).如圖,在△ABC中,AB=AC,頂角A的正對(duì)記作sadA,這時(shí)sad A=.容易知道一個(gè)角的大小與這個(gè)角的正對(duì)值也是相互唯一確定的.
根據(jù)上述對(duì)角的正對(duì)定義,解下列問題:
(1)sad 的值為( )A. B.1 C. D.2
(2)對(duì)于,∠A的正對(duì)值sad A的取值范圍是 .
(3)已知,其中為銳角,試求sad的值.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com