24. 已知在△ABC中.AB=AC=6.且△ABC的面積是12.(1)①在圖①中.求BD的長, ②在圖②中.P是BC的中點.求PM+PN 查看更多

 

題目列表(包括答案和解析)

(本小題滿分10分)

數(shù)形結(jié)合作為一種數(shù)學思想方法,數(shù)形結(jié)合的應用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即“以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即 “以形助數(shù)”。                                                            

如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個結(jié)論:(1)AC·BC = AB·CD   (2)AC2= AD·AB

(1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個根,求AD、MD的長。

(2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解: 設a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)

 

查看答案和解析>>

(本小題滿分10分)

(1)如圖24—1,已知△ABC中,∠BAC=45°,AB="AC," AD⊥BC于D, 將△ABC沿AD剪開,并分別以AB、AC為軸翻轉(zhuǎn),點E、F分別是點D的對應點,得到△ABE和△ACF (與△ABC在同一平面內(nèi)).延長EB、FC相交于G點,證明四邊形AEGF是正方形;
(2)如果⑴中AB≠AC,其他不變,如圖24—2.那么四邊形AEGF是否是正方形?請說明理由.
(3)在⑵中,若BD=2,DC=3,求AD的長.

查看答案和解析>>

(本小題滿分10分)

數(shù)形結(jié)合作為一種數(shù)學思想方法,數(shù)形結(jié)合的應用大致又可分為兩種情形:或者借助于數(shù)的精確性來闡明形的某些屬性,即 “以數(shù)解形”;或者借助形的幾何直觀性來闡明數(shù)之間的某種關(guān)系,即 “以形助數(shù)”。                                                            

如浙教版九上課本第109頁作業(yè)題第2題:如圖1,已知在△ABC中,∠ACB=900,CD⊥AB,D為垂足。易證得兩個結(jié)論:(1)AC·BC = AB·CD   (2)AC2= AD·AB

(1)請你用數(shù)形結(jié)合的“以數(shù)解形”思想來解:如圖2,已知在△ABC中(AC>BC),∠ACB=900,CD⊥AB,D為垂足, CM平分∠ACB,且BC、AC是方程x2-14x+48=0的兩個根,求AD、MD的長。

(2)請你用數(shù)形結(jié)合的“以形助數(shù)”思想來解: 設a、b、c、d都是正數(shù),滿足a:b=c:d,且a最大。求證:a+d>b+c(提示:不訪設AB=a,CD=d,AC=b,BC=c,構(gòu)造圖1)

 

查看答案和解析>>

(本題滿分10分)

已知:如圖,在△ABC中,D為BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于點G,DE⊥GF,并交AB于點E,連結(jié)EG.

(1)求證BG=CF;

(2)試猜想BE+CF與EF的大小關(guān)系,并加以證明.

 

查看答案和解析>>

(本題滿分10分)
已知:如圖,在△ABC中,D為BC的中點,過D點的直線GF交AC于F,交AC的平行線BG于點G,DE⊥GF,并交AB于點E,連結(jié)EG.
(1)求證BG=CF;
(2)試猜想BE+CF與EF的大小關(guān)系,并加以證明.

查看答案和解析>>


同步練習冊答案