=S四邊形ABCD-(S四邊形ABCD-S△DBC)-(S四邊形ABCD-S△ABC) 查看更多

 

題目列表(包括答案和解析)

提出問(wèn)題:如圖①,在四邊形ABCD中,P是AD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系?

探究發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:

(1)當(dāng)AP=AD時(shí)(如圖②):

∵AP=AD,△ABP和△ABD的高相等,

∴SABPSABD

∵PD=AD-AP=AD,△CDP和△CDA的高相等,

∴SCDPSCDA

∴SPBC =S四邊形ABCD-SABP-SCDP

=S四邊形ABCDSABDSCDA

=S四邊形ABCD(S四邊形ABCD-SDBC)-(S四邊形ABCD-SABC)

SDBCSABC

(2)當(dāng)AP=AD時(shí),探求SPBC與SABC和SDBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

(3)當(dāng)AP=AD時(shí),SPBC與SABC和SDBC之間的關(guān)系式為:________________;

(4)一般地,當(dāng)AP=AD(n表示正整數(shù))時(shí),探求SPBC與SABC和SDBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

問(wèn)題解決:當(dāng)AP=AD(0≤≤1)時(shí),SPBC與SABC和SDBC之間的關(guān)系式為:___________.

查看答案和解析>>

提出問(wèn)題:如圖①,在四邊形ABCD中,PAD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系?

探究發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:

(1)當(dāng)APAD時(shí)(如圖②):

       

APAD,△ABP和△ABD的高相等,

SABPSABD

PDADAPAD,△CDP和△CDA的高相等,

SCDPSCDA

SPBC S四邊形ABCDSABPSCDP

S四邊形ABCDSABDSCDA

S四邊形ABCD(S四邊形ABCDSDBC)(S四邊形ABCDSABC)

SDBCSABC

(2)當(dāng)APAD時(shí),探求SPBCSABCSDBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

(3)當(dāng)APAD時(shí),SPBCSABCSDBC之間的關(guān)系式為:________________

(4)一般地,當(dāng)APADn表示正整數(shù))時(shí),探求SPBCSABCSDBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

問(wèn)題解決:當(dāng)APAD01)時(shí),SPBCSABCSDBC之間的關(guān)系式為:___________

查看答案和解析>>

提出問(wèn)題:如圖,在四邊形ABCD中,P是AD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系?

探究發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:

(1)當(dāng)AP=AD時(shí)(如圖):

∵AP=AD,△ABP和△ABD的高相等,

∴S△ABPS△ABD

∵PD=AD-AP=AD,△CDP和△CDA的高相等,

∴S△CDPS△CDA

∴S△PBC=S四邊形ABCD-S△ABP-S△CDP

=S四邊形ABCDS△ABDS△CDA

=S四邊形ABCD(S四邊形ABCD-S△DBC)-(S四邊形ABCD-S△ABC)

S△DBCS△ABC

(2)當(dāng)時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

(3)當(dāng)時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為:________;

(4)一般地,當(dāng)(n表示正整數(shù))時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

問(wèn)題解決:當(dāng)時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為:________.

查看答案和解析>>

提出問(wèn)題:如圖①,在四邊形ABCD中,P是AD邊上任意一點(diǎn),△PBC與△ABC和△DBC的面積之間有什么關(guān)系?

探究發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:

(1)當(dāng)AP=AD時(shí)(如圖②):

∵AP=AD,△ABP和△ABD的高相等,

∴S△ABPS△ABD

∵PD=AD-AP=AD,△CDP和△CDA的高相等,

∴S△CDPS△CDA

∴S△PBC=S四邊形ABCD-S△ABP-S△CDP

=S四邊形ABCDS△ABDS△CDA

=S四邊形ABCD(S四邊形ABCD-S△DBC)-(S四邊形ABCD-S△ABC)

S△DBCS△ABC

(2)當(dāng)AP=AD時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

(3)當(dāng)AP=AD時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為:________;

(4)一般地,當(dāng)AP=AD(n表示正整數(shù))時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫(xiě)出求解過(guò)程;

問(wèn)題解決:當(dāng)AP=AD(0≤≤1)時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為:________.

查看答案和解析>>

課本拓展
舊知新意:
我們?nèi)菀鬃C明,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在怎樣的數(shù)量關(guān)系呢?
1.嘗試探究:
(1)如圖1,∠DBC與∠ECB分別為△ABC的兩個(gè)外角,試探究∠A與∠DBC+∠ECB之間存在怎樣的數(shù)量關(guān)系?為什么?

2.初步應(yīng)用:
(2) 如圖2,在△ABC紙片中剪去△CED,得到四邊形ABDE,∠1=130°,
則∠2-∠C=_______________;

(3) 小明聯(lián)想到了曾經(jīng)解決的一個(gè)問(wèn)題:如圖3,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有何數(shù)量關(guān)系?請(qǐng)利用上面的結(jié)論直接寫(xiě)出答案_                  _.

3.拓展提升:
(4) 如圖4,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A、∠D有何數(shù)量關(guān)系?為什么?(若需要利用上面的結(jié)論說(shuō)明,可直接使用,不需說(shuō)明理由.)

查看答案和解析>>


同步練習(xí)冊(cè)答案