如圖所示 .AC交BD于點O.請你從下面三項中選出兩個作為條件.另一個作為結論寫出一個真命題.并加以證明.(1)OA=OC (2)OB=OD (3)AB∥CD 查看更多

 

題目列表(包括答案和解析)

在一次數(shù)學課上,周老師在屏幕上出示了一個例題:
在△ABC中,D,E分別是AB,AC上的一點,BE與CD交于點O,畫出圖形(如圖),
給出下列四個條件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.
(1)要求同學從這四個等式中選出兩個作為已知條件,可判定△ABC是等腰三角形.
請你用序號在橫線上寫出所有情形.答:
①③,①④,②③和②④
①③,①④,②③和②④
;(4分)
(2)選擇第(1)題中的一種情形,說明是△ABC等腰三角形的理由,并寫出解題過程.解:我選擇
①④
①④
.(6分)

查看答案和解析>>

在一次數(shù)學課上,周老師在屏幕上出示了一個例題:
在△ABC中,D,E分別是AB,AC上的一點,BE與CD交于點O,畫出圖形(如圖),
給出下列四個條件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.
(1)要求同學從這四個等式中選出兩個作為已知條件,可判定△ABC是等腰三角形.
請你用序號在橫線上寫出所有情形.答:______;
(2)選擇第(1)題中的一種情形,說明是△ABC等腰三角形的理由,并寫出解題過程.解:我選擇______.

查看答案和解析>>

在一次數(shù)學課上,周老師在屏幕上出示了一個例題:
在△ABC中,D,E分別是AB,AC上的一點,BE與CD交于點O,畫出圖形(如圖),
給出下列四個條件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.
(1)要求同學從這四個等式中選出兩個作為已知條件,可判定△ABC是等腰三角形.
請你用序號在橫線上寫出所有情形.答:______;(4分)
(2)選擇第(1)題中的一種情形,說明是△ABC等腰三角形的理由,并寫出解題過程.解:我選擇______.(6分)

查看答案和解析>>

如圖所示,在正方形ABCD中,對角線ACBD相交于點E, AF平分∠BAC,交BD于點F

(1)求證:

(2)點從點C出發(fā),沿著線段CB向點B運動(不與點B重合),同時點從點A出發(fā),沿著BA的延長線運動,點的運動速度相同,當動點停止運動時,另一動點也隨之停止運動.如圖所示,平分,交BD于點,過點垂足為,請猜想AB三者之間的數(shù)量關系,并證明你的猜想;

(3) 在(2)的條件下,當時,求BD的長.

查看答案和解析>>

數(shù)學活動課上,甲、乙兩位同學在研究一道數(shù)學題:“已知:如圖1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.試畫直線m,l,使直線m將△ABC分成的兩個小三角形與直線l將△DEF分成的兩個小三角形分別相似,并標出每個小三角形各內(nèi)角的度數(shù).”
甲同學是這樣做的:如圖2,使得兩個直角三角形的斜邊重合,以斜邊中點0為圓心,OB長為半徑作出輔助圓,根據(jù)到定點的距離等于定長的點在圓上,可知A、B(E)、C(F)、D在⊙0上.設BD所在的直線m與AC所在的直線l交于點G,根據(jù)同弧所對的圓周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,從而△AGB∽△DGF.△GBC∽△GEF.
乙同學在甲同學的啟發(fā)下,利用輔助圓又補充了其它分割方法.
你看明白甲同學的分割方法了嗎?請你仿照甲同學的方法,把這道題其它的所有分割方法補充完整.
要求:不需寫解答過程.如圖2所示.利用輔助圓畫出示意圖,標明直線及每個小三角形各內(nèi)角的度數(shù)即可.

查看答案和解析>>


同步練習冊答案