24.如圖.從一個直徑是2的圓形鐵皮中剪下一個圓心為90°的扇形. 查看更多

 

題目列表(包括答案和解析)

現(xiàn)有如圖1的8張大小形狀相同的直角三角形紙片,三邊長分別是a、b、c.用其中4張紙片拼成如圖2的大正方形(空白部分是邊長分別為a和b的正方形);用另外4張紙片拼成如圖3的大正方形(中間的空白部分是邊長為c的正方形).

(一)觀察:
從整體看,圖2和圖3的大正方形的面積都可以表示為(a+b)2,結論①依據整個圖形的面積等于各部分面積的和.
圖2中的大正方形的面積又可以用含字母a、b的代數(shù)式表示為:
a2+b2+2ab
a2+b2+2ab
,結論②
圖3中的大正方形的面積又可以用含字母a、b、c的代數(shù)式表示為:
c2+2ab
c2+2ab
,結論③
(二)思考:
結合結論①和結論②,可以得到一個等式
(a+b)2=a2+b2+2ab
(a+b)2=a2+b2+2ab

結合結論②和結論③,可以得到一個等式
a2+b2=c2
a2+b2=c2
;
(三)應用:
請你運用(二)中得到的結論任意選擇下列兩個問題中的一個解答:
(1)求1.462+2×1.46×2.54+2.542的值;
(2)若分別以直角三角形三邊為直徑,向外作半圓(如圖4),三個半圓的面積分別記作S1、S2、S3,且S1+S2+S3=20,求S2的值.
(四)延伸(本題作為附加題,做對加2分)
若分別以直角三角形三邊為直徑,向上作三個半圓(如圖5),直角邊a=5,b=12,斜邊c=13,則表示圖中陰影部分面積和的數(shù)值是:
A
A
  A.有理數(shù)     B.無理數(shù)     C.無法判斷
請作出選擇,并說明理由.

查看答案和解析>>

(本題滿分12分)

如圖,在平面直角坐標系中,點O是坐標原點,四邊形AOCB是梯形,AB∥OC,點A的坐標為(0,8),點C的坐標為(10,0),OB=OC,

(1)      求點B的坐標;

(2)      點P從C點出發(fā),沿線段CO以1個單位/秒的速度向終點O勻速運動,過點P作PH⊥OC,交折線C-B-O于點H,設點P的運動時間為秒(),

①是否存在某個時刻,使△OPH的面積等于△OBC面積的?若存在,求出 

  的值,若不存在,請說明理由;

②以P為圓心,PC長為半徑作⊙P,當⊙P與線段OB只有一個公共點時,求的值或的取值范圍

 

查看答案和解析>>

(本題滿分12分)
如圖,在平面直角坐標系中,點O是坐標原點,四邊形AOCB是梯形,AB∥OC,點A的坐標為(0,8),點C的坐標為(10,0),OB=OC,

(1)      求點B的坐標;
(2)      點P從C點出發(fā),沿線段CO以1個單位/秒的速度向終點O勻速運動,過點P作PH⊥OC,交折線C-B-O于點H,設點P的運動時間為秒(),
①是否存在某個時刻,使△OPH的面積等于△OBC面積的?若存在,求出 
的值,若不存在,請說明理由;
②以P為圓心,PC長為半徑作⊙P,當⊙P與線段OB只有一個公共點時,求的值或的取值范圍

查看答案和解析>>

(本題滿分12分)
如圖,在平面直角坐標系中,點O是坐標原點,四邊形AOCB是梯形,AB∥OC,點A的坐標為(0,8),點C的坐標為(10,0),OB=OC,

(1)      求點B的坐標;
(2)      點P從C點出發(fā),沿線段CO以1個單位/秒的速度向終點O勻速運動,過點P作PH⊥OC,交折線C-B-O于點H,設點P的運動時間為秒(),
①是否存在某個時刻,使△OPH的面積等于△OBC面積的?若存在,求出 
的值,若不存在,請說明理由;
②以P為圓心,PC長為半徑作⊙P,當⊙P與線段OB只有一個公共點時,求的值或的取值范圍

查看答案和解析>>

(本題滿分12分)

如圖,在平面直角坐標系中,點O是坐標原點,四邊形AOCB是梯形,AB∥OC,點A的坐標為(0,8),點C的坐標為(10,0),OB=OC,

(1)       求點B的坐標;

(2)       點P從C點出發(fā),沿線段CO以1個單位/秒的速度向終點O勻速運動,過點P作PH⊥OC,交折線C-B-O于點H,設點P的運動時間為秒(),

①是否存在某個時刻,使△OPH的面積等于△OBC面積的?若存在,求出 

  的值,若不存在,請說明理由;

②以P為圓心,PC長為半徑作⊙P,當⊙P與線段OB只有一個公共點時,求的值或的取值范圍

 

查看答案和解析>>


同步練習冊答案