21.如圖11.在△ABC中.∠ACB=90°.BC的垂直平分線交BC與點(diǎn)D.交AB與點(diǎn)E.F在DE的延長(zhǎng)線上.并且AF∥CE.(1)求證:四邊形ACEF是平行四邊形,(2)當(dāng)∠B的大小滿足什么條件時(shí).四邊形ACEF是菱形?并證明你的結(jié)論. 查看更多

 

題目列表(包括答案和解析)

(本題14分)如圖11,在△ABC中,∠ACB=,AC=BC=2,M是邊AC的中點(diǎn),
CH⊥BM于H.

(1)試求sin∠MCH的值;
(2)求證:∠ABM=∠CAH;
(3)若D是邊AB上的點(diǎn),且使△AHD為等腰三角形,請(qǐng)直接寫出AD的長(zhǎng)為_(kāi)_______.

查看答案和解析>>

(本題14分)如圖11,在△ABC中,∠ACB=,AC=BC=2,M是邊AC的中點(diǎn),
CH⊥BM于H.

(1)試求sin∠MCH的值;
(2)求證:∠ABM=∠CAH;
(3)若D是邊AB上的點(diǎn),且使△AHD為等腰三角形,請(qǐng)直接寫出AD的長(zhǎng)為_(kāi)_______.

查看答案和解析>>

如圖11,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFHHFDE,∠HDE=90°)的底邊DE落在CB上,腰DH落在CA上,且DE=4,DEF=∠CBAAHAC=2∶3

(1)延長(zhǎng)HFABG,求△AHG的面積.

(2)操作:固定△ABC,將直角梯形DEFH以每秒1個(gè)單位的速度沿CB方向向右移動(dòng),直到點(diǎn)D與點(diǎn)B重合時(shí)停止,設(shè)運(yùn)動(dòng)的時(shí)間為t秒,運(yùn)動(dòng)后的直角梯形為DEFH′(如圖12).

探究1:在運(yùn)動(dòng)中,四邊形CDH′H能否為正方形?若能, 請(qǐng)求出此時(shí)t的值;若不能,請(qǐng)說(shuō)明理由.

探究2:在運(yùn)動(dòng)過(guò)程中,△ABC與直角梯形DEFH′重疊部分的面積為y,求yt的函數(shù)關(guān)系.

查看答案和解析>>

如圖1,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等邊三角形,E是AB的中點(diǎn),連結(jié)CE并延長(zhǎng)交AD于F.
(1)求證:① △AEF≌△BEC;② 四邊形BCFD是平行四邊形;
(2)如圖11,將四邊形ACBD折疊,使D與C重合,HK為折痕,求sin∠ACH的值.

查看答案和解析>>

(2010•揚(yáng)州二模)如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點(diǎn),連接CE并延長(zhǎng)交AD于F.
(1)求證:△AEF≌△BEC;
(2)判斷四邊形BCFD是何特殊四邊形,并說(shuō)出理由;
(3)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,求tan∠ACH的值.

查看答案和解析>>


同步練習(xí)冊(cè)答案