10.如下圖.在平面直角坐標(biāo)系中.圓心在x軸上的⊙E與兩坐標(biāo)軸分別交于A.B.C.D四點(diǎn).已知A.B(9.0).則線段CD的長(zhǎng)度為. 查看更多

 

題目列表(包括答案和解析)

如下圖,在平面直角坐標(biāo)系中,直線l∶y=-2x-8分別與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)P(0,k)是y軸的負(fù)半軸上的一個(gè)動(dòng)點(diǎn),以P為圓心,3為半徑作⊙P.

(1)連結(jié)PA,若PA=PB,試判斷⊙P與x軸的位置關(guān)系,并說(shuō)明理由;

(2)當(dāng)k為何值時(shí),以⊙P與直線l的兩個(gè)交點(diǎn)和圓心P為頂點(diǎn)的三角形是正三角形?

查看答案和解析>>

如下圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),以點(diǎn)A(0,-3)為圓心,5為半徑作圓A,交x軸于B、C兩點(diǎn),交y軸于點(diǎn)D、E兩點(diǎn).

(1)求點(diǎn)B、C、D的坐標(biāo);

(2)如果一個(gè)二次函數(shù)圖像經(jīng)過(guò)B、C、D三點(diǎn),求這個(gè)二次函數(shù)解析式;

(3)P為x軸正半軸上的一點(diǎn),過(guò)點(diǎn)P作與圓A相離并且與x軸垂直的直線,交上述二次函數(shù)圖像于點(diǎn)F,當(dāng)⊿CPF中一個(gè)內(nèi)角的正切之為時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

如下圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心,2為半徑畫(huà)⊙O,P是⊙O上一動(dòng)點(diǎn),且P在第一象限內(nèi),過(guò)點(diǎn)P作⊙O的切線與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B.

(1)點(diǎn)P在運(yùn)動(dòng)時(shí),線段AB的長(zhǎng)度頁(yè)在發(fā)生變化,請(qǐng)寫(xiě)出線段AB長(zhǎng)度的最小值,并說(shuō)明理由;

(2)在⊙O上是否存在一點(diǎn)Q,使得以Q、O、A、P為頂點(diǎn)的四邊形時(shí)平行四邊形?若存在,請(qǐng)求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如左圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點(diǎn)為D點(diǎn),與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0),OB=OC,tan∠ACO=
13

(1)求這個(gè)二次函數(shù)的表達(dá)式.
(2)經(jīng)過(guò)C、D兩點(diǎn)的直線,與x軸交于點(diǎn)E,在該拋物線上是否存在這樣的點(diǎn)F,使以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)若平行于x軸的直線與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
(4)如圖,若點(diǎn)G(2,y)是該拋物線上一點(diǎn),點(diǎn)P是直線AG下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△APG的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和△APG的最大面積.
精英家教網(wǎng)

查看答案和解析>>

如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過(guò)原點(diǎn)O,且與x軸、y軸分別相交于A(-6,0)、B(0,-8精英家教網(wǎng))兩點(diǎn).
(1)求出直線AB的函數(shù)解析式;
(2)若有一拋物線的對(duì)稱(chēng)軸平行于y軸且經(jīng)過(guò)點(diǎn)M,頂點(diǎn)C在⊙M上,開(kāi)口向下,且經(jīng)過(guò)點(diǎn)B,求此拋物線的函數(shù)解析式;
(3)設(shè)(2)中的拋物線交x軸于D、E兩點(diǎn),在拋物線上是否存在點(diǎn)P,使得S△PDE=
115
S△ABC?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案