21.如下圖.在梯形ABCD中.AB∥DC.E是BC的中點(diǎn).AE.DC的延長線相交于點(diǎn)F.連結(jié)AC.BF. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,在梯形ABCD中,AB∥DC,∠ABC=90°,AB=2,BC=4,tan∠ADC=2.
(1)求證:DC=BC;
(2)E是梯形內(nèi)一點(diǎn),連接DE、CE,將△DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得△BCF,連接EF.判斷EF與CE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在(2)的條件下,當(dāng)CE=2BE,∠BEC=135°時(shí),求cos∠BFE的值.

查看答案和解析>>

如圖,在梯形ABCD中, AB∥DC,∠BCD=90°,且AB=1,BC=2,
tan∠ADC=2.
⑴求證:DC=BC;
⑵E是梯形內(nèi)的一點(diǎn),F(xiàn)是梯形外的一點(diǎn),且∠EDC=∠FBC,DE=BF,試判斷△ECF的形狀,并證明你的結(jié)論;⑶在⑵的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時(shí),求sin∠BFE的值.

查看答案和解析>>

如圖,在梯形ABCD中,ABDC,∠ABC=90°,AB=2,BC=4,tan∠ADC=2.

(1)求證:DCBC;
(2)E是梯形內(nèi)一點(diǎn),連接DE、CE,將△DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得△BCF,連接EF.判斷EFCE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在(2)的條件下,當(dāng)CE=2BE,∠BEC=135°時(shí),求cos∠BFE的值.

查看答案和解析>>

如圖,在梯形ABCD中, AB∥DC,∠BCD=90°,且AB=1,BC=2,

tan∠ADC=2.

⑴求證:DC=BC;

⑵E是梯形內(nèi)的一點(diǎn),F(xiàn)是梯形外的一點(diǎn),且∠EDC=∠FBC,DE=BF,試判斷△ECF的形狀,并證明你的結(jié)論;⑶在⑵的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時(shí),求sin∠BFE的值.

 

查看答案和解析>>

如圖,在梯形ABCD中,ABDC,∠ABC=90°,AB=2,BC=4,tan∠ADC=2.

(1)求證:DCBC;

(2)E是梯形內(nèi)一點(diǎn),連接DE、CE,將△DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得△BCF,連接EF.判斷EFCE的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)在(2)的條件下,當(dāng)CE=2BE,∠BEC=135°時(shí),求cos∠BFE的值.

 

查看答案和解析>>


同步練習(xí)冊答案