(1)如圖1,已知矩形ABCD中,點(diǎn)E是BC上的一動點(diǎn),過點(diǎn)E作EF⊥BD于點(diǎn)F,EG⊥AC于點(diǎn)G,CH⊥BD于點(diǎn)H,試證明CH=EF+EG;
(2)若點(diǎn)E在BC的延長線上,如圖2,過點(diǎn)E作EF⊥BD于點(diǎn)F,EG⊥AC的延長線于點(diǎn)G,CH⊥BD于點(diǎn)H,則EF、EG、CH三者之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;
(3)如圖3,BD是正方形ABCD的對角線,L在BD上,且BL=BC,連接CL,點(diǎn)E是CL上任一點(diǎn),EF⊥BD于點(diǎn)F,EG⊥BC于點(diǎn)G,猜想EF、EG、BD之間具有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;
(4)觀察圖1、圖2、圖3的特性,請你根據(jù)這一特性構(gòu)造一個圖形,使它仍然具有EF、EG、CH這樣的線段的關(guān)系,并滿足(1)或(2)的結(jié)論,寫出相關(guān)題設(shè)的條件和結(jié)論.