18.用配方法解方程:22+1=3. 查看更多

 

題目列表(包括答案和解析)

配方法可以用來解一元二次方程,還可以用它來解決很多問題.例如:因為3a2≥0,所以3a2+1≥1,即:3a2+1有最小值1,此時a=0;同樣,因為-3(a+1)2≤0,所以-3(a+1)2+6≤6,即-3(a+1)2+6有最大值6,此時 a=-1.
①當(dāng)x=
1
1
時,代數(shù)式-2(x-1)2+3有最
(填寫大或。┲禐
3
3

②當(dāng)x=
2
2
時,代數(shù)式-x2+4x+3有最
(填寫大或。┲禐
7
7

③矩形花園的一面靠墻,另外三面的柵欄所圍成的總長度是16m,當(dāng)花園與墻相鄰的邊長為多少時,花園的面積最大?最大面積是多少?

查看答案和解析>>

所謂配方法其實就是逆用完全平方公式,即a2±2ab+b2=(a+b)2.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如
3+2
2
=12+2
2
+(
2
2=(1+
2
2;x2+2x+5=x2+2x+1+4=(x+1)2+4等等.請你用配方法解決以下問題:
(1)解方程:x2=5+2
6
;(不能出現(xiàn)形如
5+2
6
的雙重二次根式)
(2)求證:不論m為何值,解關(guān)于x的一元二次方程x2+(m-1)x+m-3=0總有兩個不等實數(shù)根.
(3)若a2+4b2+c2-2a-8b+10c+30=0,解關(guān)于x的一元二次方程ax2-bx+c=0.

查看答案和解析>>

所謂配方法其實就是逆用完全平方公式,即a2±2ab+b2=(a+b)2.該方法在數(shù)、式、方程等多方面應(yīng)用非常廣泛,如
3+2
2
=12+2
2
+(
2
2=(1+
2
2;x2+2x+5=x2+2x+1+4=(x+1)2+4等等.請你用配方法解決以下問題:
(1)解方程:x2=5+2
6
;(不能出現(xiàn)形如
5+2
6
的雙重二次根式)
(2)求證:不論m為何值,解關(guān)于x的一元二次方程x2+(m-1)x+m-3=0總有兩個不等實數(shù)根.
(3)若a2+4b2+c2-2a-8b+10c+30=0,解關(guān)于x的一元二次方程ax2-bx+c=0.

查看答案和解析>>

(1)計算:
2
2
(2
12
+4
1
8
-3
48
);
②x取何值,
x+1
2x-3
有意義.
(2)解方程:
①(x-5)(x+7)=4;
②x2+3x-4=0(用配方法)

查看答案和解析>>

(1)計算:
2
2
(2
12
+4
1
8
-3
48
);
②x取何值,
x+1
2x-3
有意義.
(2)解方程:
①(x-5)(x+7)=4;
②x2+3x-4=0(用配方法)

查看答案和解析>>


同步練習(xí)冊答案