(Ⅱ)若.求證:對任意的正整數(shù).不等式恒成立. 2009年西安市高三年級第三次質(zhì)量檢測試題 查看更多

 

題目列表(包括答案和解析)

數(shù)列{an}滿足:對任意的正整數(shù)m,n;s,t,若m+n=s+t,則
(1+am)(1+an)
am+an
=
(1+as)(1+at)
as+at
,且a1=3,a2=-
1
3

(1)求證:
(1-am)(1-an)
am+an
=
(1-as)(1-at)
as+at

(2)求數(shù)列{an}的通項公式;
(3)記cn=a2n-a2n+1(n∈N*),求證:c1+c2+…+cn
4
3

查看答案和解析>>

數(shù)列{an}滿足:對任意的正整數(shù)m,n;s,t,若m+n=s+t,則,且
(1)求證:
(2)求數(shù)列{an}的通項公式;
(3)記cn=a2n-a2n+1(n∈N*),求證:

查看答案和解析>>

給定正整數(shù),若項數(shù)為的數(shù)列滿足:對任意的,均有(其中),則稱數(shù)列為“Γ數(shù)列”.
(1)判斷數(shù)列是否是“Γ數(shù)列”,并說明理由;
(2)若為“Γ數(shù)列”,求證:恒成立;
(3)設是公差為的無窮項等差數(shù)列,若對任意的正整數(shù),
均構(gòu)成“Γ數(shù)列”,求的公差

查看答案和解析>>

給定正整數(shù),若項數(shù)為的數(shù)列滿足:對任意的,均有(其中),則稱數(shù)列為“Γ數(shù)列”.
(1)判斷數(shù)列是否是“Γ數(shù)列”,并說明理由;
(2)若為“Γ數(shù)列”,求證:恒成立;
(3)設是公差為的無窮項等差數(shù)列,若對任意的正整數(shù),
均構(gòu)成“Γ數(shù)列”,求的公差

查看答案和解析>>

為正整數(shù),規(guī)定:,已知

(1)解不等式:

(2)設集合,對任意,證明:;

(3)求的值;

(4)若集合,證明:中至少包含有個元素.

查看答案和解析>>

數(shù)學(理)

第I卷(共60分)

一、選擇題(每小題5分,共60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

C

C

A

A

A

A

D

B

A

A

第Ⅱ卷(共90分)

二、填空題(每小題4分,共16分)

13.6ec8aac122bd4f6e       14.3       15.97        16.③

三、解答題(共74分)

17.(本小題滿分12分)

   (I)6ec8aac122bd4f6e的內(nèi)角和6ec8aac122bd4f6e。

        6ec8aac122bd4f6e,

        6ec8aac122bd4f6e

   (Ⅱ)6ec8aac122bd4f6e

         6ec8aac122bd4f6e

         當6ec8aac122bd4f6e6ec8aac122bd4f6e時,6ec8aac122bd4f6e取最大值6ec8aac122bd4f6e

18.(本題滿分12分)

    記A:該夫婦生一個小孩是患病男孩,B:該夫婦生一個小孩是患病女孩:C:該夫婦生一個小孩是不患病男孩;D:該夫婦生一個小孩是不患病女孩,則

    6ec8aac122bd4f6e

   (I)6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e

   (Ⅱ)顯然,6ec8aac122bd4f6e的取值為0,1,2,3

          6ec8aac122bd4f6e

          6ec8aac122bd4f6e

          所以6ec8aac122bd4f6e的分布列為

6ec8aac122bd4f6e

0

1

2

3

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

       

 

 

 

    

          顯然,6ec8aac122bd4f6e,故6ec8aac122bd4f6e

19.(本題滿分12分)

解法一:(I)證明:連接6ec8aac122bd4f6e,設6ec8aac122bd4f6e,連接DE

     6ec8aac122bd4f6e三棱柱6ec8aac122bd4f6e是正三棱柱,且6ec8aac122bd4f6e

     6ec8aac122bd4f6e四邊形6ec8aac122bd4f6e是正方形,

     ∴E是6ec8aac122bd4f6e的中點,又6ec8aac122bd4f6e6ec8aac122bd4f6e的中點,

     ∴6ec8aac122bd4f6e

     ∵6ec8aac122bd4f6e平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

     ∴6ec8aac122bd4f6e平面6ec8aac122bd4f6e

(Ⅱ)解:在平面6ec8aac122bd4f6e內(nèi)作6ec8aac122bd4f6e于點6ec8aac122bd4f6e,在面6ec8aac122bd4f6e;內(nèi)作6ec8aac122bd4f6e6ec8aac122bd4f6e連接6ec8aac122bd4f6e。

     ∵平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e,∴6ec8aac122bd4f6e平面6ec8aac122bd4f6e,

     ∵6ec8aac122bd4f6e6ec8aac122bd4f6e在平面6ec8aac122bd4f6e上的射影,6ec8aac122bd4f6e

     ∴6ec8aac122bd4f6e是二面角6ec8aac122bd4f6e的平面角

     設6ec8aac122bd4f6e在正6ec8aac122bd4f6e中,6ec8aac122bd4f6e

     在6ec8aac122bd4f6e中,6ec8aac122bd4f6e6ec8aac122bd4f6e中,6ec8aac122bd4f6e

     從而6ec8aac122bd4f6e

     所以,二面角6ec8aac122bd4f6e的平面角的余弦值為6ec8aac122bd4f6e

解法二:建立空間直角坐標系6ec8aac122bd4f6e,如圖,

(I)證明:連接6ec8aac122bd4f6e6ec8aac122bd4f6e,連接6ec8aac122bd4f6e,設6ec8aac122bd4f6e

6ec8aac122bd4f6e    則6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e

(Ⅱ)解:∵6ec8aac122bd4f6e

      設6ec8aac122bd4f6e是平面6ec8aac122bd4f6e的法向量,則6ec8aac122bd4f6e,且6ec8aac122bd4f6e

      故6ec8aac122bd4f6e,取6ec8aac122bd4f6e,得6ec8aac122bd4f6e

      同理,可求得平面6ec8aac122bd4f6e的法向量是6ec8aac122bd4f6e

      設二面角6ec8aac122bd4f6e的大小為6ec8aac122bd4f6e,則6ec8aac122bd4f6e

      所以,二面角6ec8aac122bd4f6e的平面角的余弦值為6ec8aac122bd4f6e

20.(本題滿分12分)

  (I)6ec8aac122bd4f6e

       6ec8aac122bd4f6e6ec8aac122bd4f6e上是增函數(shù),

       6ec8aac122bd4f6e6ec8aac122bd4f6e上恒成立,即6ec8aac122bd4f6e恒成立。

       6ec8aac122bd4f6e(當且僅當6ec8aac122bd4f6e時,等號成立),

       6ec8aac122bd4f6e

       所以6ec8aac122bd4f6e

 (Ⅱ)設6ec8aac122bd4f6e,則6ec8aac122bd4f6e

       6ec8aac122bd4f6e

      (1)當6ec8aac122bd4f6e時,6ec8aac122bd4f6e最小值為6ec8aac122bd4f6e

      (2)當6ec8aac122bd4f6e時,6ec8aac122bd4f6e最小值為6ec8aac122bd4f6e

21.(本題滿分12分)

  (I)將6ec8aac122bd4f6e代入6ec8aac122bd4f6e6ec8aac122bd4f6e,整理得

      6ec8aac122bd4f6e

      由6ec8aac122bd4f6e6ec8aac122bd4f6e,故

6ec8aac122bd4f6e

(Ⅱ)當兩條切線的斜率都存在而且不等于6ec8aac122bd4f6e時,設其中一條的斜率為k,

      則另外一條的斜率為6ec8aac122bd4f6e

      于是由上述結(jié)論可知橢圓斜率為k的切線方程為

      6ec8aac122bd4f6e    ①

      又橢圓斜率為6ec8aac122bd4f6e的切線方程為

      6ec8aac122bd4f6e    ②

      由①得6ec8aac122bd4f6e

      由②得6ec8aac122bd4f6e

      兩式相加得6ec8aac122bd4f6e

      于是,所求P點坐標6ec8aac122bd4f6e滿足6ec8aac122bd4f6e因此,6ec8aac122bd4f6e

      當一條切線的斜率不存在時,另一條切線的斜率必為0,此時顯然也有6ec8aac122bd4f6e

      所以6ec8aac122bd4f6e為定值。

22.(本題滿分14分)

 (I)由6ec8aac122bd4f6e6ec8aac122bd4f6e

      當6ec8aac122bd4f6e時,6ec8aac122bd4f6e,化簡得

      6ec8aac122bd4f6e  ①

      以6ec8aac122bd4f6e代替6ec8aac122bd4f6e

      6ec8aac122bd4f6e   ②

      兩式相減得

      6ec8aac122bd4f6e

      則6ec8aac122bd4f6e,其中6ec8aac122bd4f6e

      所以,數(shù)列6ec8aac122bd4f6e為等差數(shù)列

(Ⅱ)由6ec8aac122bd4f6e,結(jié)合(I)的結(jié)論知6ec8aac122bd4f6e

      于是不等式6ec8aac122bd4f6e

      因此,欲證原不等式成立,只需證6ec8aac122bd4f6e6ec8aac122bd4f6e

      令6ec8aac122bd4f6e,則6ec8aac122bd4f6e6ec8aac122bd4f6e上恒正,

      6ec8aac122bd4f6e6ec8aac122bd4f6e上單調(diào)遞增,當6ec8aac122bd4f6e時,恒有6ec8aac122bd4f6e

其他解法參照以上評分標準評分

 

 

本資料由《七彩教育網(wǎng)》www.7caiedu.cn 提供!


同步練習冊答案