題目列表(包括答案和解析)
初三(1)班數(shù)學(xué)興趣小組在社會(huì)實(shí)踐活動(dòng)中,進(jìn)行了如下的課題研究:用一定長(zhǎng)度的鋁合金材料,將它設(shè)計(jì)成外觀為長(zhǎng)方形的三種框架,根據(jù)以下圖案,小組發(fā)現(xiàn)在圖案(1)中,如果鋁合金材料總長(zhǎng)度(圖中所有黑線的長(zhǎng)度和)為6米,當(dāng)AB為1米,時(shí)長(zhǎng)方形框架ABCD的面積是1×=m2;在圖案(2)中,如果鋁合金材料總長(zhǎng)度為6米,設(shè)AB為1米,長(zhǎng)方形框架ABCD的面積是1×1==1m2,請(qǐng)你回答:在圖案(3)中,如果鋁合金材料總長(zhǎng)度為6米, 設(shè)AB為米, 長(zhǎng)方形框架ABCD的面積為S,
(1)求S與x的函數(shù)關(guān)系式;
(2)當(dāng)AB是多少米時(shí), 長(zhǎng)方形框架ABCD的面積為.
初三(1)班數(shù)學(xué)興趣小組在社會(huì)實(shí)踐活動(dòng)中,進(jìn)行了如下的課題研究:用一定長(zhǎng)度的鋁合金材料,將它設(shè)計(jì)成外觀為長(zhǎng)方形的三種框架,使長(zhǎng)方形框架面積最大.小組討論后,同學(xué)們做了以下三種試驗(yàn):
請(qǐng)根據(jù)以上圖案回答下列問題:
(1)在圖案(1)中,如果鋁合金材料總長(zhǎng)度(圖中所有黑線的長(zhǎng)度和)為6m,當(dāng)AB為1m,
長(zhǎng)方形框架ABCD的面積是 m2;
(2)在圖案(2)中,如果鋁合金材料總長(zhǎng)度為6m,設(shè)AB為m,長(zhǎng)方形框架ABCD的面積為S= (用含的代數(shù)式表示);當(dāng)AB= m時(shí), 長(zhǎng)方形框架ABCD的面積S最大;
(3)在圖案(3)中,如果鋁合金材料總長(zhǎng)度為m, 設(shè)AB為m,求出ABCD的面積S與的函數(shù)關(guān)系式,并求出當(dāng)AB為多少m時(shí), 長(zhǎng)方形框架ABCD的面積S最大.
初三(1)班數(shù)學(xué)興趣小組在社會(huì)實(shí)踐活動(dòng)中,進(jìn)行了如下的課題研究:用一定長(zhǎng)度的鋁合金材料,將它設(shè)計(jì)成外觀為長(zhǎng)方形的三種框架,使長(zhǎng)方形框架面積最大.小組討論后,同學(xué)們做了以下三種試驗(yàn):
請(qǐng)根據(jù)以下圖案回答問題:(1)在圖①中,如果鋁合金材料總長(zhǎng)度(圖中所有黑線的長(zhǎng)度和)為6 m,當(dāng)AB為1 m時(shí),長(zhǎng)方形框架ABCD的面積是_________
(2)
在圖②中,如果鋁合金材料總長(zhǎng)度為6 m,設(shè)AB為m,長(zhǎng)方形框架ABCD的面積為S=_______(用含的代數(shù)式表示);當(dāng)AB=________m時(shí),長(zhǎng)方形框架ABCD的面積S最大;在圖③中,如果鋁合金材料總長(zhǎng)度為m,設(shè)AB為m,當(dāng)AB=_______m時(shí),長(zhǎng)方形框架ABCD的面積S最大.(3)
經(jīng)過這三種情形的試驗(yàn),他們發(fā)現(xiàn)對(duì)于圖④這樣的情形也存在著一定的規(guī)律.那么這個(gè)規(guī)律是什么?請(qǐng)加以證明
初三(1)班數(shù)學(xué)興趣小組在社會(huì)實(shí)踐活動(dòng)中,進(jìn)行了如下的課題研究:用一定長(zhǎng)度的鋁合金材料,將它設(shè)計(jì)成外觀為長(zhǎng)方形的三種框架,使長(zhǎng)方形框架面積最大.
小組討論后,同學(xué)們做了以下三種試驗(yàn):
圖案(1) 圖案(2) 圖案(3)
請(qǐng)根據(jù)以上圖案回答下列問題:
(1)在圖案(1)中,如果鋁合金材料總長(zhǎng)度(圖中所有黑線的長(zhǎng)度和)為6米,當(dāng)AB為1米,
長(zhǎng)方形框架ABCD的面積是 m2;
(2)在圖案(2)中,如果鋁合金材料總長(zhǎng)度為6米,設(shè)AB為米,長(zhǎng)方形框架ABCD的面積為S= (用含的代數(shù)式表示);當(dāng)AB= 時(shí)米, 長(zhǎng)方形框架ABCD的面積S最大;
在圖案(3)中,如果鋁合金材料總長(zhǎng)度為米, 設(shè)AB為米,當(dāng)AB是多少米時(shí), 長(zhǎng)方形框架ABCD的面積S最大.
初三(1)班數(shù)學(xué)興趣小組在社會(huì)實(shí)踐活動(dòng)中,進(jìn)行了如下的課題研究:用一定長(zhǎng)度的鋁合金材料,將它設(shè)計(jì)成外觀為長(zhǎng)方形的三種框架,使長(zhǎng)方形框架面積最大.
小組討論后,同學(xué)們做了以下三種試驗(yàn):
圖案(1) 圖案(2) 圖案(3)
請(qǐng)根據(jù)以上圖案回答下列問題:
(1)在圖案(1)中,如果鋁合金材料總長(zhǎng)度(圖中所有黑線的長(zhǎng)度和)為6米,當(dāng)AB為1米,
長(zhǎng)方形框架ABCD的面積是 m2;
(2)在圖案(2)中,如果鋁合金材料總長(zhǎng)度為6米,設(shè)AB為米,長(zhǎng)方形框架ABCD的面積為S= (用含的代數(shù)式表示);當(dāng)AB= 時(shí)米, 長(zhǎng)方形框架ABCD的面積S最大;
在圖案(3)中,如果鋁合金材料總長(zhǎng)度為米, 設(shè)AB為米,當(dāng)AB是多少米時(shí), 長(zhǎng)方形框架ABCD的面積S最大.
說明:對(duì)于解題過程中有的題目可用多種解法(或多種證明方法),如果考生的解答與參考答案不同,請(qǐng)參照此評(píng)分標(biāo)準(zhǔn)酌情給分.
一. 選擇題(本題共10小題,每小題4分,共40分)
題號(hào)
1
2
3
4
5
6
7
8
9
10
答案
C
A
B
B
D
B
A
D
C
C
評(píng)分標(biāo)準(zhǔn)
選對(duì)一題給4分,不選,多選,錯(cuò)選均不給分
二、填空題(本題有6小題,每小題5分,共30分)
11.X≠6 ; 12. 2; 13.8; 14. 65°;
15.96 ; 16. (0,0),(0,),(0,-3)寫對(duì)一個(gè)給3分,兩個(gè)4分,三個(gè)給5分
三、解答題(本題有8小題,共80分)
17. (本題8分)
(1)解:原式=1+3- …………(3分)
= …………(1分)
(2)解:愿方程可化為:x=3(x-2 ) …………(2分)
x=3 …………(1分)
經(jīng)檢驗(yàn) :x=3 是原方程的解. …………(1分)
18.(本題8分)
添加條件例舉:AD=BC;OC=OD;∠C=∠D;∠CAO=∠DBC等. ……(2分)
證明例舉(以添加條件AD=BC為例):
∵ AB=AB,∠1=∠2,BC=AD, …………(2分)
∴ △ABC≌△BAD. …………(2分)
∴ AC=BD. …………(2分)
19.(本題8分)
(1); …………(3分)
(2)列對(duì)表格或畫對(duì)樹狀圖; …………(3分)
兩次都取到歡歡的概率為. …………(2分)
20.(本題8分)
答案不唯一.只要符合要求,畫對(duì)一個(gè)給4分,畫對(duì)兩個(gè)給8分. ……(8分)
21.(本題8分)
(1)∵AB是⊙O直徑,∴∠ACB=Rt∠.∴sin∠BAC=. ………(3分)
(2)∵OE⊥AC,O是⊙O的圓心, ∴E是AC中點(diǎn).∴OE=BC=. …(3分)
(3)∵AC==4, ∴tan∠ADC= tan∠ABC=. ……(2分)
22.(本題10分)
(1) 25 ; ……………(2分)
(2) 50; ……………(2分)
畫對(duì)條形統(tǒng)計(jì)圖 ……………(2分)
(3)5人;(列對(duì)方程得2分,給出答案給2分) ……………(4分)
23.(本題12分)
(1); ………………(2分)
(2)-x2+2x ,1, ; (每格2分) ……………(6分)
(3)設(shè)AB長(zhǎng)為m,那么AD為
S=?=-. ……………(2分)
當(dāng)=時(shí),S最大. ……………(2分)
24.(本題14分)
(1)直線AB解析式為:y=x+. ……………(3分)
(2)方法一:設(shè)點(diǎn)C坐標(biāo)為(x,x+),那么OD=x,CD=x+.
∴==. ………(2分)
由題意: =,解得(舍去) ………(2分)
∴。茫ǎ,) ………(1分)
方法二:∵ ,=,∴.…(2分)
由OA=OB,得∠BAO=30°,AD=CD.
∴ =CD×AD==.可得CD=. ………(2分)
∴ AD=1,OD=2.∴C(2,). ………(1分)
(3)當(dāng)∠OBP=Rt∠時(shí),如圖
①若△BOP∽△OBA,則∠BOP=∠BAO=30°,BP=OB=3,
∴(3,). ……(2分)
②若△BPO∽△OBA,則∠BPO=∠BAO=30°,OP=OB=1.
∴(1,). …………(1分)
當(dāng)∠OPB=Rt∠時(shí)
③ 過點(diǎn)P作OP⊥BC于點(diǎn)P(如圖),此時(shí)△PBO∽△OBA,∠BOP=∠BAO=30°
過點(diǎn)P作PM⊥OA于點(diǎn)M.
方法一: 在Rt△PBO中,BP=OB=,OP=BP=.
∵ 在Rt△PMO中,∠OPM=30°,
∴ OM=OP=;PM=OM=.∴(,). ……(1分)
方法二:設(shè)P(x ,x+),得OM=x ,PM=x+
由∠BOP=∠BAO,得∠POM=∠ABO.
∵tan∠POM=== ,tan∠ABOC==.
∴x+=x,解得x=.此時(shí),(,). ……(1分)
④若△POB∽△OBA(如圖),則∠OBP=∠BAO=30°,∠POM=30°.
∴ PM=OM=.
∴ (,)(由對(duì)稱性也可得到點(diǎn)的坐標(biāo)).…………(2分)
當(dāng)∠OPB=Rt∠時(shí),點(diǎn)P在x軸上,不符合要求.
綜合得,符合條件的點(diǎn)有四個(gè),分別是:
(3,),(1,),(,),(,).
注:四個(gè)點(diǎn)中,求得一個(gè)P點(diǎn)坐標(biāo)給2分,兩個(gè)給3分,三個(gè)給4分,四個(gè)給6分.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com