. 解得(舍)...k= -1 查看更多

 

題目列表(包括答案和解析)

在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,.(Ⅰ)求an 與bn;(Ⅱ)設(shè)數(shù)列{cn}滿足,求{cn}的前n項(xiàng)和Tn.

【解析】本試題主要是考查了等比數(shù)列的通項(xiàng)公式和求和的運(yùn)用。第一問中,利用等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通項(xiàng)公式故an=3+3(n-1)=3n, bn=3 n-1.     第二問中,,由第一問中知道,然后利用裂項(xiàng)求和得到Tn.

解: (Ⅰ) 設(shè):{an}的公差為d,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image003.png">解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120143914538050_ST.files/image004.png">……………8分

 

查看答案和解析>>

已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為,

(1)若方程有兩個(gè)相等的根,求的解析式;

(2)若的最大值為正數(shù),求的取值范圍.

【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),

設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。

第二問中,

解:(1)∵f(x)+2x>0的解集為(1,3),

   ①

由方程

              ②

∵方程②有兩個(gè)相等的根,

,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故當(dāng)f(x)的最大值為正數(shù)時(shí),實(shí)數(shù)a的取值范圍是

 

查看答案和解析>>

閱讀材料:某同學(xué)求解sin18°的值其過程為:設(shè)α=18°,則5α=90°,從而3α=90°-2α,于是cos3α=cos(90°-2α),即cos3α=sin2α,展開得4cos3α-3cosα=2sinαcosα,∴cosα=cos18°≠0,∴4cos2α-3=2sinα,化簡,得4sin2α+2sinα-1=0,解得sinα=
-1±
5
4
,∵sinα=sin18°∈(0,1),∴sinα=
-1+
5
4
(sinα=
-1-
5
4
<0舍去),即sin18°=
-1+
5
4
.試完成以下填空:設(shè)函數(shù)f(x)=ax3+1對任意x∈[-1,1]都有f(x)≥0成立,則實(shí)數(shù)a的值為
4
4

查看答案和解析>>

設(shè)定義域?yàn)镽的函數(shù)f(x)=
lg|x-1|,x≠1
0,x=1
,則關(guān)于x的方程f2(x)+bf(x)+c=0有5個(gè)不同的實(shí)數(shù)解得充要條件是( 。
A、b<0且c>0
B、b>0且c<0
C、b<0且c=0
D、b≥0且c=0

查看答案和解析>>

有一道解三角形的題,因?yàn)榧垙埰茡p,在劃橫線地方有一個(gè)已知條件看不清.具體如下:在△ABC中角A,B,C所對的邊長分別為a,b,c,已知角B=45°,a=
3
,
c=
6
+
2
2
c=
6
+
2
2
,求角A.若已知正確答案為A=60°,且必須使用所有已知條件才能解得,請你寫出一個(gè)符合要求的已知條件.

查看答案和解析>>


同步練習(xí)冊答案