三位同學在研究函數(shù) f 時.分別給出下面三個結論: ① 函數(shù) f (x) 的值域為 ② 若x1≠x2.則一定有f (x1)≠f (x2) ③ 若規(guī)定 f1.fn+1(x) = f [ fn(x)].則 fn(x) = 對任意 n∈N* 恒成立. 你認為上述三個結論中正確的個數(shù)有 ▲選做題:在下面三道題中選做兩題.三題都選的只計算前兩題的得分. 查看更多

 

題目列表(包括答案和解析)

三位同學在研究函數(shù) f (x) = (x∈R) 時,分別給出下面三個結論:

       ① 函數(shù) f (x) 的值域為 (-1,1)

       ② 若x1x2,則一定有f (x1)≠f (x2)

       ③ 若規(guī)定 f1(x) = f (x),fn+1(x) = f [ fn(x)],則 fn(x) = 對任意 n∈N* 恒成立.

你認為上述三個結論中正確的個數(shù)有                                                  

A.0個                        B.1個                        C.2個                        D.3個

查看答案和解析>>

三位同學在研究函數(shù)f(x)=
x
1+|x|
(x∈R) 時,分別給出下面三個結論:
①函數(shù)f(x)的值域為 (-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對任意n∈N*恒成立.
你認為上述三個結論中正確的個數(shù)有______.

查看答案和解析>>

三位同學在研究函數(shù)f(x)=(xR)時,分別給出下面三個結論:

①函數(shù)f(x)的值域為(-1,1)

②若x1x2,則一定有f(x1)≠f(x2)

③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=對任意nN*恒成立.

你認為上述三個結論中正確的個數(shù)有

[  ]

A.0個

B.1個

C.2個

D.3個

查看答案和解析>>

三位同學在研究函數(shù)(x∈R) 時,分別給出下面三個結論:
①函數(shù)f(x)的值域為 (-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則對任意n∈N*恒成立.
你認為上述三個結論中正確的個數(shù)有   

查看答案和解析>>

三位同學在研究函數(shù)(x∈R) 時,分別給出下面三個結論:
①函數(shù)f(x)的值域為 (-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則對任意n∈N*恒成立.
你認為上述三個結論中正確的個數(shù)有   

查看答案和解析>>

一、選擇題(本大題8小題,共40分,每小題給出的四個選項中,只有一項是符合要求)

題號

1

2

3

4

5

6

7

8

答案

A

C

A

D

A

B

B

B

二、填空題:(本大題共須作6小題,每小題5分,共30分,把答案填寫在題橫線上).

9、        10、    11、   12、3

▲選做題:在下面三道題中選做兩題,三題都選的只計算前兩題的得分。

 13、3   ;14、! ; 15、

三、解答題(本大題共6小題,共80分.解答應寫出文字說明、證明過程或演算步驟)

16、(本小題滿分14分)解:(1)的內(nèi)角和

           …………………1分

   ……………5分

  …………………7分

(2)……………9分

…………12分

時,y取得最大值        ………………………14分

17.(本小題滿分12分)

解:(1)3個旅游團選擇3條不同線路的概率為:P1=…………3分

    (2)恰有兩條線路沒有被選擇的概率為:P2=……6分

    (3)設選擇甲線路旅游團數(shù)為ξ,則ξ=0,1,2,3………………7分

    P(ξ=0)=       Pξ=1)=       

    Pξ=2)=      Pξ=3)= ………………9分

    ∴ξ的分布列為:

ξ

0

1

2

3

                        

   

………………10分

 

    ∴期望Eξ=0×+1×+2×+3×=………………12分

18.(本小題滿分12分)

  

(1)過O作OF⊥BC于F,連接O1F,

∵OO1⊥面AC,∴BC⊥O1F,

∴∠O1FO是二面角O1-BC-D的平面角,………………3分

∵OB=2,∠OBF=60°,∴OF=.

在Rt△O1OF在,tan∠O1FO=

∴∠O1FO=60° 即二面角O1―BC―D為60°………………6分

(2)在△O1AC中,OE是△O1AC的中位線,∴OE∥O1C

∴OE∥O1BC,∵BC⊥面O1OF,∴面O1BC⊥面O1OF,交線O1F.

過O作OH⊥O1F于H,則OH是點O到面O1BC的距離,………………10分

    解法二:(1)∵OO1⊥平面AC,

    ∴OO1⊥OA,OO1⊥OB,又OA⊥OB,………………2分

    建立如圖所示的空間直角坐標系(如圖)

    ∵底面ABCD是邊長為4,∠DAB=60°的菱形,

    ∴OA=2,OB=2,

    則A(2,0,0),B(0,2,0),C(-2,0,0),O1(0,0,3)………………3分

    設平面O1BC的法向量為=(x,y,z),

    ,,

    ,則z=2,則x=-,y=3,

    =(-,3,2),而平面AC的法向量=(0,0,3)………………5分

    ∴cos<,>=

    設O1-BC-D的平面角為α, ∴cosα=∴α=60°.

    故二面角O1-BC-D為60°. ………………6分

    (2)設點E到平面O1BC的距離為d,

        ∵E是O1A的中點,∴=(-,0,),………………9分

    則d=∴點E到面O1BC的距離等于。……………12分

    19.(本小題滿分14分)解:易知   …………2分

    設P(x,y),則

       ………………4分

    ,

    ,即點P為橢圓短軸端點時,有最小值3;

    ,即點P為橢圓長軸端點時,有最大值4 ……6分

    (Ⅱ)假設存在滿足條件的直線l易知點A(5,0)在橢圓的外部,當直線l的斜率不存在時,直線l與橢圓無交點,所在直線l斜率存在,設為k

    直線l的方程為  ……………………8分

    由方程組

    依題意  …………10分

    時,設交點C,CD的中點為R

    又|F2C|=|F2D|

      …………13分

    ∴20k2=20k2-4,而20k2=20k2-4不成立,   所以不存在直線,使得|F2C|=|F2D|

    綜上所述,不存在直線l,使得|F2C|=|F2D|  …………14分

    20.(本小題滿分14分)解:(1),

       …………2分

    上無極值點  …………3分

    當p>0時,令的變化情況如下表:

    x

    (0,)

    +

    0

    極大值

    從上表可以看出:當p>0 時,有唯一的極大值點  ………………7分

    (Ⅱ)當p>0時在處取得極大值,此極大值也是最大值,

    要使恒成立,只需,      ∴

    ∴p的取值范圍為[1,+∞   …………………10分

    (Ⅲ)令p=1,由(Ⅱ)知,

    ,

       …………11分

      …………12分

     

    ∴結論成立   …………………14分

    21、解:(1)由題意得,解得,………………2分

               ………………4分

    (2)由(1)得,         ①

      ②    ①-②得

     . ,………………6分

    ,則由的增大而減小時,恒成立,………………9分

          (3)由題意得恒成立

      記,則

    ………………12分

    是隨的增大而增大 

    的最小值為,,即. ………………14分

     


    同步練習冊答案